
The JasperReports Ultimate Guide

Page 1

The JasperReports Ultimate Guide
Version 1.0

Author:
Teodor Danciu

Copyright © 2002 Teodor Danciu (teodord@hotmail.com). All rights reserved.

The JasperReports Ultimate Guide

Page 2

Table of contents

1 Introduction__4

2 API Overview___5

3 Main Tasks and Processes ___10
3.1 XML Parsing ___ 10

3.2 Compiling Report Designs __ 10

3.3 Report Design Preview ___ 12

3.4 Filling Reports __ 13

3.5 Viewing Reports___ 15

3.6 Printing Reports___ 16

3.7 Exporting Reports ___ 17

3.8 Object Loading and Saving__ 17

4 Report Designs___19
4.1 DTD Reference__ 19

4.2 XML Encoding__ 20

4.3 Report Properties__ 21

5 Report Data ___25
5.1 Expressions ___ 25

5.2 Parameters ___ 26
5.2.1 Built-in Report Parameters __ 28

5.3 Data Source___ 29

5.4 Report Query ___ 31

5.5 Fields __ 32

5.6 Variables ___ 34
5.6.1 Calculations __ 35
5.6.2 Built-in Report Variables__ 37

6 Report Sections __38
6.1 Main Report Sections __ 39

6.2 Data Grouping __ 40

7 Scriptlets__43

8 Report Elements ___44
8.1 Text Elements___ 48

8.1.1 Fonts and Unicode Support __ 49
8.1.2 Static Texts __ 53
8.1.3 Text Fields ___ 53

8.2 Graphic Elements__ 56
8.2.1 Lines ___ 57
8.2.2 Rectangles ___ 58
8.2.3 Images __ 58

The JasperReports Ultimate Guide

Page 3

8.2.4 Charts and Graphics__ 60

8.3 Hyperlinks ___ 60

8.4 Element Groups ___ 62

9 Subreports __63
9.1 Subreport Parameters __ 65

9.2 Subreport Data Source ___ 66

10 Advanced JasperReports ___67
10.1 XML Report Designs Loading and Writing ____________________________ 67

10.2 Implementing Data Sources ___ 67

10.3 Customizing Viewers ___ 68

10.4 Exporting to New Output Formats____________________________________ 68

The JasperReports Ultimate Guide

Page 4

1 Introduction

The JasperReports library is a very powerful and flexible report-generating tool that has the ability to
deliver rich content onto the screen, to the printer or into PDF, HTML or XML files. Hopefully, in the
future, other output formats such as CSV, XLS, RTF and other will be supported.

The library is entirely written in Java and can be used in a variety of Java enabled applications,
including J2EE or Web applications, to generate dynamic content. Its main purpose is to help creating
page oriented, ready to print documents in a simple and flexible manner.

JasperReports organizes data according to the report design defined in an XML file. This data may
come from various data sources including relational databases, collections or arrays of Java objects.
Users can plug the reporting library to custom made data sources, by implementing a simple interface,
as you will see later in this book.

In order to fill a report with data, the XML report design must be compiled first. Through compilation,
a report design object is generated and then serialized in order to store it on disk or send it over the
network. This serialized object is then used when the application wants to fill the specified report
design with data. In fact, the compilation of a report design implies the compilation of all Java
expressions defined in the XML file representing the report design. Various verifications are made at
compilation time, to check the report design consistency. The result is a ready to fill report design that
will be then used to generate documents on different sets of data.

To fill a report design, the engine needs to receive the report data. This may come in various forms.
Some of this data can be passed in as report parameters. But most of the data will be found in the report
data source. The reporting engine can directly receive special data source objects from which to get the
information to put on the report, or can deal itself with a supplied JDBC connection object, if that data
is located in a relational database.

The result of the report filling operation is a new object that represents the ready to print document.
This one is also serialized for storage on disk or network transfer. It can be viewed directly using the
JasperReports built-in viewer or can be exported to other, more popular formats like PDF, HTML or
XML.

The JasperReports Ultimate Guide

Page 5

2 API Overview

Most of the time, when using the JasperReports library, people will get to work only with a few classes
and won't have to get to know the entire API, in order to benefit from all its features and functionality.

In this section we shall get a close look at the classes and interfaces which are significant when using
the library and see how to make use of them in applications that need the reporting functionality that
JasperReports offer.

- figure 1 -

Class dori.jasper.engine.design.JasperDesign

We begin with this class because instances of it represent the raw material, which the JasperReports
library uses for report generating purposes. Such instances are obtained after the XML report design
files are parsed by the library internal XML parsing procedures, for example, but can be build
programmatically, by the application that uses JasperReports, if working with XML files is not an
option. Among the supplied samples that come with the project source files, there is one called
noxmldesign that you can check to see how to dynamically create a
dori.jasper.engine.design.JasperDesign object without editing an XML report design file.

All instances of the dori.jasper.engine.design.JasperDesign class are subject to compilation
before being used for filling and report generation. This is why they are considered the raw material for
the library.

Class dori.jasper.engine.JasperReport

Instances of this class represent compiled report design objects. These can be obtained only as a result
of the JasperReports report compilation process and are ready to use for filling with data and report
generation.

Through compilation, along with various consistency checks and rearrangements of the report elements
for more rapid later utilization, the library creates a temporary class file containing all the report
expressions such as report variables expressions, text field and image expressions, group expressions,
etc.
This temporary Java source file is compiled on the fly using either the Java compiler classes from the
JDK used to run the application. If the tools.jar file is not found in the classpath in order to do that,
the compilation will go ahead anyway by launching at runtime the javac.exe compiler, behind the
scenes. The bytecodes of the resulting class file are stored in the resulting
dori.jasper.engine.JasperReport for using when filling the report with data, to evaluate the
various report expressions at runtime.

JasperDesign JasperReport JasperPrintXML PDF

XML

HTML

Screen

Printer

JRXmlLoader JRCompiler

JasperCompileManager

JasperFillManager

parse compile

fill

JasperPrintManager

JasperExportManager

print

export

The JasperReports Ultimate Guide

Page 6

Class dori.jasper.engine.JasperCompileManager

This is the class that exposes all the library functionality concerning the report compilation.
It has various methods that allow the users to compile XML report designs found in files on disk or that
come from input streams. It also lets you compile in-memory report designs by directly passing a
dori.jasper.engine.design.JasperDesign object and receiving the corresponding
dori.jasper.engine.JasperReport object.

Other utility methods include report design verification and XML report design generation for in-
memory constructed dori.jasper.engine.design.JasperDesign class instances. Those are very
useful especially in GUI tools that simplify the report design work.

Class dori.jasper.engine.JasperPrint

After a compiled report design is filled with data, the resulting document comes in the form of a
dori.jasper.engine.JasperPrint instance. Such an object can be viewed directly using the
JasperReports build-in report viewer, or can be serialized for disk storage and later use, or for sending
it over the network.

The instances of this class represent the output of the report filling process of the JasperReports library
and can be considered as a custom format for storing full featured, page oriented documents. They can
be transformed into other more popular formats like PDF, HTML, XML or other by using the library's
export functionality.

Interface dori.jasper.engine.JRDataSource

JasperReports is a very flexible reporting tool as far as the source of the report data is concerned. It lets
people use any kind of data source they might want to, as long as they can provide an appropriate
implementation of this interface, so that the reporting engine can interpret and retrieve the data from
that data source when filling the reports.

Normally, every time a report is being filled, an instance of this interface is always supplied or created
behind the scenes by the reporting engine.

Class dori.jasper.engine.JRResultSetDataSource

This is a default implementation of the dori.jasper.engine.JRDataSource interface.
Since most of the reports are generated using data that comes from a relational database, JasperReports
includes by default this implementation that wraps a java.sql.ResultSet object.

This class can be instantiated on purpose, to wrap already loaded result sets, before passing it to the
report filling routines, but it is also used by the reporting engine to wrap the data retrieved from the
database after having executed through JDBC the report query, if present.

Class dori.jasper.engine.data.JRTableModelDataSource

This class represents another default implementation of the dori.jasper.engine.JRDataSource
interface that is shipped with the library. It wraps a javax.swing.table.TableModel object and
can be used in Java Swing applications to generate reports using data that has already been loaded into
on-screen tables.

The JasperReports Ultimate Guide

Page 7

Class dori.jasper.engine.JREmptyDataSource

Being the most simple implementation of the dori.jasper.engine.JRDataSource interface, this
class can be used in reports that do not display data from the supplied data source, but rather from
parameters, and when only the number of virtual rows in the data source is important.

Many of the provided samples such as fonts, images, shapes and unicode use an instance of this class
when filling the reports, to simulate a data source with one record in it, but with all the fields null.

Class dori.jasper.engine.JasperFillManager

This class is the façade to the report filling functionality of the JasperReports library.
It exposes a variety of methods that receive a report design in the form of an object, file or input stream
and produce a document also in various output forms: object, file or output stream.

But along with the report design, the report filling engine has to receive also the data source from
which to retrieve data and the values for the report parameters, in order to generate the documents.
Parameter values are always supplied in a java.util.Map object in which the keys are the report
parameter names.

The data source can be supplied in two different forms, depending on the situation:

Normally, it has to be is supplied as a dori.jasper.engine.JRDataSource object, like already
mentioned above.

But with the majority of reports in the reporting world being filled with data from relational databases,
JasperReports has a built-in default behavior that lets people specify an SQL query in the report design
itself. This SQL query is executed in order to retrieve the data to use when filling the report at runtime.
In such cases, the only thing JasperReports needs is a java.sqlConnection object, instead of the
usual data source object. It needs this connection object to connect to the relational database
management system through JDBC and execute the report query.
It will automatically creates a dori.jasper.engine.JRResultSetDataSource behind the scenes
to wrap the java.sql.ResultSet object returned after the execution of the query and passes it to the
normal report filling process.

Class dori.jasper.engine.JRAbstractScriptlet

Scriptlets are a very powerful feature of the JasperReports library. They allow users to write custom
code that will be executed by the reporting engine during the report filling process. This user code can
deal with report data manipulation and gets executed at well-defined moments such as page, column or
group breaks, opening a whole new range of possibilities in customizing the content of the generated
documents.

Class dori.jasper.engine.JRDefaultScriptlet

This is a convenience subclass of the dori.jasper.engine.JRAbstractScriptlet class. Most of
the time users will chose to subclass this when working with scriptlets, so they won't have to implement
all the abstract methods declared in the abstract class.

Class dori.jasper.engine.JasperPrintManager

We are talking here about a Java reporting tool and what reporting tools are meant for is printing.
After having filed a report, we have the option of viewing it, exporting it into a different format and last
but not least printing it.

The JasperReports Ultimate Guide

Page 8

In JasperReports, we can print reports using this particular manager class, which is a façade to the
printing functionality exposed by the library.

We can find here various methods that send to the printer entire documents or only portions of it, either
by displaying the print dialog or not.

The content of a page from a JasperReports document can be displayed by generating a
java.awt.Image object for it using this manager class.

Class dori.jasper.engine.JasperExportManager

As already mentioned, JasperReports allows transforming generated documents from its proprietary
format into more popular documents formats such as PDF, HTML or XML. With time, this part of the
JasperReports functionality will be extended to support other formats like CSV, XSL and other.

This manager class has various methods that ca process data that comes from different sources and
goes to different destinations: files, input and output streams, etc.

Class dori.jasper.engine.JasperRunManager

Sometimes is useful to produce documents only in a popular format such as PDF or HTML, without
having to store on disk the serialized, intermediate dori.jasper.egine.JasperPrint object,
produced by the report filling process.
This can be achieved using this manager class which immediately exports the document produced by
the report filling process into the desired output format.
The use of this manager class is shown and can be tested in the supplied webapp sample, where PDF
and HTML content is produced on the fly.

Class dori.jasper.view.JRViewer

This class is different from the rest of the classes listed above in the way that it is more like pluggable
visual component than an utility class.

It can be used in Swing based applications to view the reports generated by the JasperReports library.

- figure 2 -

This visual component is not meant to satisfy everybody. It was included in the main library more like
a demo component, to show how the core printing functionality can be used to display the reports in
Swing based applications, by generating java.awt.Image objects for the document pages, using the
dori.jasper.engine.JasperPrintManager class.

The JasperReports Ultimate Guide

Page 9

The preferred way to adapt this component to a particular application needs is by subclassing it.

Class dori.jasper.view.JasperViewer

This is also more like a didactical purpose class that uses the dori.jasper.view.JRViewer
component to display reports. It represents a simple Java Swing application that can load and display
reports. It is used in almost all of the supplied samples to display the generated documents.

Class dori.jasper.view.JasperDesignViewer

Usually, an application that uses the JasperReports library for reporting purposes will never get to work
with this class. This can be used at design time to preview the report templates before going into
production and help with the design work. It was included in the main library as a development tool in
order to make up for the missing visual designer.

- figure 3 -

This is also used in all the samples to preview the report designs, either in the raw XML form or the
compiled form.

Class dori.jasper.engine.util.JRLoader

All JasperReports main processes, like report compilation, report filling and exporting, often work with
serialized objects. Sometimes it is useful to manually load those serialized objects before submitting
them to the desired JasperReport process.

This is why we have the dori.jasper.engine.util.JRLoader class, which is a utility class that
helps loading serialized objects found in various locations such as files, URLs or input streams.

The most interesting method exposed by this class is the loadObjectFromLocation(String
location) method.
When calling this method to load an object from the supplied location, the program will first try to
interpret the location as a valid URL. If this fails, then the program will consider that the supplied
location is the name of a file on disk and will try to read from it. If no file is found at that location, it
will try to locate a resource through classpath that would correspond to the location. Only after this
third try fails, an exception will be thrown.

The JasperReports Ultimate Guide

Page 10

3 Main Tasks and Processes

In this chapter we shall see what you have to know in order to parse your XML report designs, compile
them, fill them with data, view them, print them, or export them to other formats.

3.1 XML Parsing

JasperReports uses the SAX 2.0 API to parse the XML files. However, it is not tided to a particular
SAX 2.0 implementation, like Xerces for examples, but instead you are able to decide at runtime what
XML parser you are using.

To instantiate the parser class, JasperReports uses the createXMLReader() method of the
org.xml.sax.helpers.XMLReaderFactory class.
In this case, it will be necessary at runtime to set the org.xml.sax.driver Java system property to
the full class name of the SAX driver, as specified in the SAX 2.0 documentation.

You can achieve this in two ways. We shall explain both using the Xerces XML parser, just like we do
it in the provided samples. If you use a different SAX 2.0 XML parser, you have to modify the name of
the parser class accordingly.

The first way you can set a system property is by using the -D switch in the command line when you
launch the Java Virtual Machine:

java -Dorg.xml.sax.driver=org.apache.xerces.parsers.SAXParser MySAXApp
sample.xml

In all the provided samples we use the ANT build tool to perform different tasks. We supply this
system property to the JVM using the <sysproperty> element of the <java> built-in task:

<sysproperty key="org.xml.sax.driver"
value="org.apache.xerces.parsers.SAXParser"/>

The second way to set a system property is by using the
java.lang.System.setProperty(String key, String value) method like this:

System.setProperty("org.xml.sax.driver",
"org.apache.xerces.parsers.SAXParser");

Check the jsp/compile.jsp and WEB-INF/classes/servlets/CompileServlet.java files in
the webapp sample provided, to see this in action.

3.2 Compiling Report Designs

In order to generate a report, one has to create the report's design first, either by editing an XML file or
by programmatically building a dori.jasper.engine.design.JasperDesign object. In this
book, we shall mainly deal with the XML approach, because it is the preferred way to use the
JasperReports library at least for the moment, and we'll have the chance to better understand its
behavior.

It is very likely that the present and future GUI tools that are and will be developed to help and simplify
the report design work will directly use the JasperReports API to create the report design objects,
without the need to pass through the XML form.

But this book does not try to document the use of such GUI tools and concentrates only on the
JasperReports core functionality. This is why the entire book is oriented towards explaining the content

The JasperReports Ultimate Guide

Page 11

and syntax of the XML report designs. Once this approach understood, the other, programmatic
approach should be more then intuitive.

As already mentioned, the XML report designs are the raw material that the library uses to generate
reports. This is because this XML content has to be parsed and loaded into a
dori.jasper.engine.design.JasperDesign object that has to suffer the report compilation
process before being ready to be filed with data by the reporting engine.

Note that most of the time, the report compilation should be considered more like a
development time job. You should compile your application report designs just like you
compile your Java source files, and you should ship them already compiled, with your
application, to be installed on the deployment platform. That's because in the majority of
cases, the report designs are static and few applications need to offer their users the
possibility to dynamically generate report designs, that would need to be compiled at
runtime.

The main purpose of the report compilation process is to produce and load the bytecodes of a class
containing all the report expressions. This dynamically created class will be used when filling the
report to evaluate all those report expressions.

But before proceeding with this class generation, the engine verifies the report design for consistency
and will not continue if at least one validation check fails. We shall see what are the conditions for a
report design to be considered valid in the following chapters of this book.

For now, we only need to know how the report compilation works, so that we can make sure it can be
performed successfully.

There are at least three important aspects concerning the way the bytecodes for this class containing all
the report expressions are obtained:
� temporary working directory;
� Java compiler used;
� classpath;

In order to be able to compile a Java source file, this file must be created and saved on disk. The output
of the Java compilation process is also a file with the .class extension. This is why JasperReports
needs access to a temporary, working directory for it to create the class containing the report
expressions and to compile it. After the report compilation task is finished, those temporary class files
will be automatically deleted and the resulting bytecodes are stored in the resulting
dori.jasper.engine.JasperReport, which can be serialized itself and stored on disk, if desired.

By default, the temporary working directory is the current directory when launching the JVM, and it is
obtained interrogating the user.dir system property. It can easily be changed, by supplying a value to
a system property called jasper.reports.compile.temp. This is useful especially in Web
environment when you don't want to end up using the same directory that contains the batch files that
launch the Web server, as a temporary working location for the report compilation process.

The second aspect mentioned concerns the Java compiler used to compile the report expressions class.
First, the reporting engine tries to compile the Java source file using the sun.tools.javac.Main
class. This approach may succeed only if the tools.jar file that contains this class, usually found in
the /lib directory of the JDK installation directory, is available through classpath.
If loading the compiler class sun.tools.javac.Main fails, the program tries to dynamically launch
the Java compilation process, just like we would normally do it from the command line, using the
javac.exe program found in the /bin directory of the JDK installation directory.

This is why in the project tree available for download, copying the tools.jar file from the JDK
location into the /lib directory of the JasperReports project is an optional operation. If the
tools.jar file is not found in classpath, JasperReports displays a warning and continues as
mentioned.

The JasperReports Ultimate Guide

Page 12

When compiling Java source files, the most important thing seems to be the classpath. If the Java
compiler does not find in the supplied classpath all the classes that are referenced by the source files it
tries to compile, the whole process fails and stops, the errors being displayed on the console.

The same happens also when JasperReports compiles the report expressions class. It is important then
to make sure we supply to the Java compiler at runtime the correct classpath for the compilation
process to succeed. For instance, we have to make sure that in the classpath we supply the custom
classes that we might use in the report expressions.
There is a default behavior for this aspect also. If no special classpath for compiling the report classes
is supplied, the engine will use the current JVM classpath returned by the system property
java.class.path. This default behavior can be overridden by putting the desired classpath in the
system property called jasper.reports.compile.class.path.

You can see the jsp/compile.jsp and WEB-INF/classes/servlets/CompileServlet.java
files in the webapp sample provided, for the code snippet that makes use of this Java system properties
to override the default behavior of the JasperReports report compilation process.

Most of the time, compiling a report requires only a simple call to the JasperReports library like in the
following line of code:

dori.jasper.engine.JasperCompileManager.compileReport(myXmlFileName);

This call will produce the compiled report design and will store it in a file with the .jasper extension,
located in the same directory as the supplied XML report design file.

3.3 Report Design Preview

The JasperReports library is not shipped with an advanced GUI tool to help the design work. At this
time, there are at least 4 projects that try to provide such a tool.

However, the library contains a very helpful visual component that allows report creators to preview
the report designs as they build them.

The dori.jasper.view.JasperDesigner class is a simple Swing based Java application that can
load and display a report design either in its XML form or in the compiled form. Even if it is not a
complex GUI application, lacking advance functionality like the drag and dropping of the visual report
elements, it is very helpful instrument. All the supplied samples were created using this design viewer.

All the supplied samples have already prepared ANT tasks in their build.xml files that will launch
this design viewer for you to see the report designs.
In fact there are 2 ANT tasks for each sample report: viewDesign and viewDesignXML.
The first one loads the compiled report design that is normally found in the .jasper file. The second
one loads the XML report design, being the most useful since you can edit the XML file and push the
Reload button to immediately see the modification appearing on the screen.

If you have the ANT build tool installed on your system, in order to preview a sample report design,
you simply go to the desired sample directory and launch from the command line something like this:

>ant viewDesignXML

or

>ant viewDesign

In case you do not have ANT installed and you don't want to get it (you'll miss all the fun), here's the
complete command line that will launch the design viewer to preview one of the sample XML report
designs. We assume that you have a copy of the entire JasperReports source tree on your system
(Windows command line syntax):

The JasperReports Ultimate Guide

Page 13

>java -classpath ./;../../../lib/commons-digester.jar;
../../../lib/commons-beanutils.jar;../../../lib/commons-collections.jar;
../../../lib/xerces.jar;../../../lib/jasperreports.jar
-Dorg.xml.sax.driver=org.apache.xerces.parsers.SAXParser
dori.jasper.view.JasperDesignViewer -XML -FFirstJasper.xml

By launching this command line, you should be able to see this window:

- figure 4 -

3.4 Filling Reports

The report filling process is the most important of all the JasperReports library functionality. It
represents the main objective for this piece of software, as it is the process that manipulates sets of data
in order to produce high quality documents, just like any reporting tool is supposed to do.

There are tree things that should be supplied to the report filling process as input:
� report design (report template);
� parameters;
� data source.

The output is always a single, final document that is ready to be viewed, printed or exported to other
formats.

We have already seen that in order to fill a report, we are going to use the
dori.jasper.engine.JasperFillManager class. This class has various methods that allow us to
fill report designs that are located on disk, come from input streams or are supplied directly as in-
memory dori.jasper.engine.JasperReport objects.
The output produced always corresponds to the type of the input received. That is, when receiving a
file name for the report design, the generated report will be also placed in a file on disk. When the
report design is read from an input stream, the generated report will be written to an output stream and
so forth.

It might be that those various utility methods for filling the reports are not sufficient for a particular
application, who for example would want to load report designs as resources from classpath and output
the generated documents to files on disk, at a certain location.

In such cases, the developers should consider loading the report design objects before passing them to
the report filling routines, using the dori.jasper.engine.util.JRLoader utility class. This way,
they could retrieve some report design properties such as the report name, so they can construct the
name of the resulting document, to place at the desired disk location.

The JasperReports Ultimate Guide

Page 14

There are a lot of report filling scenarios that could be imagined in a real world application, and the
report filling manager class only tries to cover a portion of them, considered to be used more often. But
it should be no problem for anybody who might want to customize the report-filling process using the
library's basic functionality, as suggested above.

The report parameter values are supplied always packed in a java.util.Map object, which has the
parameter names as its keys.

As for the third thing that the report filling process expects to receive, the data source, there are two
different scenarios.

Normally, the engine works with an instance of the dori.jasper.engine.JRDataSource interface,
from which it extracts the data when filling the report.
And the façade class dori.jasper.engine.JasperFillManager has a full set of methods that
receive a dori.jasper.engine.JRDataSource object as the data source of the report that is going
to be filled.

But there is another set of report filling methods in this manager class that receive a
java.sql.Connection object as a parameters, instead of expected data source object.
This is because most of the time reports are generated using data that comes from tables found in
relational databases.
Users have the possibility to specify the SQL query needed to retrieve the report data from the
database, in the report design itself. At runtime, the only thing the engine would need would be a JDBC
connection object to use in order to connect to the desired relational database, execute the SQL query
and retrieve the report data.
Behind the scenes, the engine will still use a special dori.jasper.engine.JRDataSource object,
but this is preformed transparently for the calling program.

There are at least 4 sample applications provided with the project, which fill the reports using data from
an also supplied HSQL database server. Those are jasper, query, scriptlet and subreport samples. To
run them, you have to start the HSQL database server first, by going to the /demo/hsqldb directory of
the JasperReports project and launching this command:

>ant

or

>ant runServer

Note that you have to have ANT build tool installed on your system for you to launch the server in such
as simple manner. Otherwise you could still launch it like this:

>java -classpath ./;../../lib/hsqldb.jar org.hsqldb.Server

Here's a simple code snippet taken from the query sample that shows how to fill a report:

//Preparing parameters
Map parameters = new HashMap();
parameters.put("ReportTitle", "Address Report");
parameters.put("FilterClause", "'Boston', 'Chicago', 'Oslo'");
parameters.put("OrderClause", "City");

//Invoking the filling process
JasperFillManager.fillReportToFile(fileName, parameters, getConnection());

The JasperReports Ultimate Guide

Page 15

3.5 Viewing Reports

The output of the report filling process is always a dori.jasper.engine.JasperPrint object.
If we serialize this object and store it on disk, normally in a .jrprint file, we could say that this is the
proprietary format in which JasperReports stores its generated documents.

In order to view the generated reports in this proprietary format or in the proprietary XML format
produced by the internal XML exporter, JasperReports has a built-in viewer. It is a Swing based
component that can be easily integrated in other Java applications that want to offer this functionality,
without the need for them to export the documents in more popular formats, so that they can be viewed.
The dori.jasper.view.JRViewer class represents this visual component. It can be customized to
respond to a particular application needs by subclassing it. This way we could add or remove buttons
from the existing toolbar it displays, or perform other modifications.

This is shown in the supplied webapp sample, where the JRViewerPlus class adds a new button to the
existing toolbar of this report viewer component.

JasperReports comes also with an included simple Swing application that uses the visual component for
viewing the reports. It helps viewing reports stored on disk, in the JasperReports .jrprint proprietary
format as we called it or in the XML format produced by the default XML exporter.

This simple Java Swing application is implemented in the dori.jasper.view.JasperViewer class
and it is used in almost all the provided samples to view the generated reports.

If you have the ANT build tool installed on your system, in order to view a sample report, you go to the
desired sample directory and launch the following from the command line:

>ant view

or

>ant viewXML

Here are the corresponding complete command lines in case you don't have ANT installed, to view one
of the sample report both in the .jrprint and XML formats (Windows command line syntax):

>java -classpath ./;../../../lib/jasperreports.jar
dori.jasper.view.JasperViewer -FFirstJasper.jrprint

or

>java -classpath ./;../../../lib/commons-digester.jar;
../../../lib/commons-beanutils.jar;
../../../lib/commons-collections.jar;
../../../lib/xerces.jar;../../../lib/jasperreports.jar
-Dorg.xml.sax.driver=org.apache.xerces.parsers.SAXParser
dori.jasper.view.JasperViewer -XML -FFirstJasper.jrpxml

By launching these command lines, you should be able to see this window:

The JasperReports Ultimate Guide

Page 16

- figure 5 -

The viewer application implemented in the dori.jasper.view.JasperViewer class
should be considered more like a demo application that shows how the
dori.jasper.view.JRViewer component can be used in Swing applications to display
reports.
Those who will try to use it directly in their applications, by calling the public and static
viewReport() methods it exposes, will end up noticing that when they close the report
viewer frame, their application will unexpectedly terminate. This is because the
JasperViewer class makes a call to the System.exit(0) and a way around this would
be to subclass it and remove the java.awt.event.WindowListener it has registered
by default.

3.6 Printing Reports

The main objective of the JasperReports library, if not of all existing reporting tools, is to create ready
to print documents. The majority of reports that are generated by applications end up or are supposed to
end up on paper.

We can print the documents generated by the JasperReports library using the
dori.jasper.engine.JasperPrintManager class. Of course, documents can also be printed after
they are exported to other formats such as HTML or PDF. But we are going to explain how to use the
specialized manager class mentioned, to print documents that are stored or transferred in the
JasperReports proprietary format (dori.jasper.engine.JasperPrint objects).

Among the various methods that the dori.jasper.engine.JasperPrintManager class exposes,
we can find some that allow printing a whole document, a single page or a page range, with and
without displaying the print dialog.

Here's how you could print an entire document without displaying the standard print dialog:

dori.jasper.engine.JasperPrintManager.printReport(myReport, false);

And now another code snippet that shows how to print all the pages from 5 to 11 of your document,
after having displayed the standard print dialog:

dori.jasper.engine.JasperPrintManager.printPages(myReport, 4, 10, true);

The JasperReports Ultimate Guide

Page 17

3.7 Exporting Reports

In some application environments, it is useful to transform the JasperReports generated documents,
from the proprietary format into other, more popular formats like PDF or HTML. Doing this, you can
make sure other people can view those reports without having to install special viewers on their
systems, especially when sending the documents over the network.

There is a façade class in JasperReports also for this type of functionality. Its name is
dori.jasper.engine.JasperExportmanager and can be used to obtain PDF, HTML or XML
content for the documents produced by the report filling process.

Exporting means taking a dori.jasper.engine.JasperPrint object, which represents a
JasperReport document and transform it in a different format. The main reason to export the reports
into other formats is to allow more and more people to view those reports. HTML reports can be
viewed by anybody these days, since at least one browser is available on any system. Viewing
JasperReports documents in their proprietary form would require the installation of special software on
the target platform, at least in the form of a Java applet if not more.

In conclusion, the ability to export reports into other formats is a very useful feature and with time,
more and more output formats will be supported.

Those who want to export their reports into other, new formats, have to implement a
special interface called dori.jasper.engine.JRExporter or to extend the
corresponding dori.jasper.engine.JRAbstractExporter class.

For the moment, the library is shipped with 3 special exporter classes that produce PDF, HTML and
XML. Those are found in the dori.jasper.engine.export package, but can be used by calling the
appropriate methods on the façade manager class mentioned previously.

Here's how you could export your report to HTML format:

dori.jasper.engine.JasperExportManager.exportReportToHtmlFile(myReport);

3.8 Object Loading and Saving

When using the JasperReports library functionality, you'll often get to work with serialized objects such
as compiled report designs, generated reports, etc.
Sometimes you'll have to manually load serialized objects from different sources like files and input
streams or to serialize the object you produce yourself using the library's core functionality.

There are two utility classes, specially created for these kinds of operations, which are often used by
the reporting engine itself:

dori.jasper.engine.util.JRLoader
dori.jasper.engine.util.JRSaver.

The first one exposes various methods that allow people to load serialized object from different types
of sources like files, URLs, input streams or classpath resources.
The most interesting utility method found in this class, is the one called loadObjectFromLocation.

It receives a java.lang.String as a parameter and returns the serialized object loaded from that
particular location. First, the program tries to see whether the supplied location is a valid URL. If it is,
it will try to load a serialized object from that URL. If it is not a valid URL, the program will assume
that the parameter represents the name of a file and will try to locate on disk in order to read the
serialized object from there. If it is no file is found, the program will finally assume that the specified
location represents a classpath resource name and will read from there. Only if those operations fail, an
exception will be thrown.

The JasperReports Ultimate Guide

Page 18

The counter part of this object loading utility class is the dori.jasper.engine.util.JRSaver
class that you could use to serialize your objects and put them into files on disk or send them over the
network through output streams.

There is another important aspect that we mention in this section because it has to do with object
loading. It is about loading already generated reports or final JasperReports documents that have been
previously exported to the XML format.
Unlike the above loader, it is not about loading serialized objects, but about parsing XML content and
creating a dori.jasper.engine.JasperPrint object that will mirror the document found in that
XML content.

This can be achieved using the dori.jasper.engine.xml.JRPrintXmlLoader class, which has
public static methods that can create in-memory document objects by parsing XML content read from
files or input streams.

The JasperReports Ultimate Guide

Page 19

4 Report Designs

The report design represents a template that will be used by the JasperReports engine to deliver
dynamic content to the printer, to the screen or to the Web. Data stored in the database is organized
during the report filling process according to this report design to obtain ready to print, page oriented
documents.

Generally speaking, a report design contains all the information concerning the structure and the aspect
of the documents that will be generated when the data will be provided. This information concerns the
position and the content of various text or graphic elements that will appear on the document, their
appearance, the custom calculations, data grouping and data manipulation that should be performed
when generating the documents, etc.

Normally, the report designs are defined in XML files with a special structure that we shall see in detail
later and are subject to the JasperReports compilation process before being filled with data. But they
also can be constructed in-memory, programmatically, using the JasperReports API. There is a sample
called noxmldesign shipped with the JasperReports project source files that shows how to directly
create in-memory report designs, without editing any XML files at all.

4.1 DTD Reference

When working with XML report designs, JasperReports uses its own internal DTD files to validate the
XML content it receives for processing. If the XML validation is passed, it means that the supplied
report design corresponds to the JasperReports required XML structure and syntax and the engine is
able to generate the compiled version of the report design.

Valid XML report designs always point to the JasperReports internal DTD files for validation. Without
the DTD reference specified, the report compilation process fails abruptly. This should not be
considered a too much burden for anybody since the DTD reference is always the same and can simply
be copied from previous report designs. At the beginning you will copy it from the supplied samples.

As already mentioned, the engine recognizes only the DTD references that point to its internal DTD
files. You cannot make a copy of the DTD files found among the library source files and point to that
copy in your XML report designs. If you want to do that, you will also have to alter the code of some of
the library classes including the dori.jasper.engine.xml.JRXmlDigester class.
If you ever encounter problems such as the engine not finding its own internal DTD files due to some
resource loading problems, make sure you have eliminated every possible cause before deciding to use
external DTD files. Encountering such a problem is very unlikely since the resource loading
mechanism of the library was improved with time.

There are only two valid DTD references for the XML report designs and they are the following:

<!DOCTYPE jasperReport PUBLIC "-//JasperReports//DTD Report Design//EN"
"http://jasperreports.sourceforge.net/dtds/jasperreport.dtd">

or

<!DOCTYPE jasperReport PUBLIC "-//JasperReports//DTD Report Design//EN"
"http://www.jasperreports.com/dtds/jasperreport.dtd">

The root element of an XML report design is <jasperReport> and this is how an usual JasperReports
XML report design file looks:

The JasperReports Ultimate Guide

Page 20

<?xml version="1.0"?>
<!DOCTYPE jasperReport PUBLIC "-//JasperReports//DTD Report Design//EN"
"http://jasperreports.sourceforge.net/dtds/jasperreport.dtd">

<jasperReport name="name_of_the_report" ... >
...
</jasperReports>

The first 3 points make it for the report design properties and settings and the other 3 for the suppressed
various report design elements such as report parameters, fields, variables, groups, report sections, etc.
We shall see all of them in detail in the following chapters of this book.

4.2 XML Encoding

When creating XML report designs in different languages, a special attention should be accorded to the
encoding attribute that can be used in the header of the XML file. By default, if no value is specified
for this attribute, the XML parser uses "UTF-8" as the encoding for the content of the XML file.

This important because the report design often contains localized static texts, which are introduced
when manually editing the XML file.

For most of the West European languages, the "ISO-8859-1" encoding, also known as LATIN1, should
be sufficient to deal with special characters like é, â, è, ç, that we have in French for example.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE jasperReport PUBLIC "-//JasperReports//DTD Report Design//EN"
"http://jasperreports.sourceforge.net/dtds/jasperreport.dtd">

<jasperReport name="name_of_the_report" ... >
...
</jasperReports>

To find out what is the exact encoding type to specify when editing XML files in a particular language,
you have to check the XML documentation. FIXME

The JasperReports Ultimate Guide

Page 21

4.3 Report Properties

We have already seen that <jasperReport> is the root element of an XML report design. In this
section will get to know in detail what are the properties of a report design objects and what is are the
XML attributes that correspond to them.

XML Syntax

<!ELEMENT jasperReport (reportFont*, parameter*, queryString?, field*,
variable*, group*, title?, pageHeader?, columnHeader?, detail?,
columnFooter?, pageFooter?, summary?)>

<!ATTLIST jasperReport
name NMTOKEN #REQUIRED
columnCount NMTOKEN "1"
printOrder (Vertical | Horizontal) "Vertical"
pageWidth NMTOKEN "595"
pageHeight NMTOKEN "842"
orientation (Portrait | Landscape) "Portrait"
whenNoDataType (NoPages | BlankPage | AllSectionsNoDetail) "NoPages"
columnWidth NMTOKEN "555"
columnSpacing NMTOKEN "0"
leftMargin NMTOKEN "20"
rightMargin NMTOKEN "20"
topMargin NMTOKEN "30"
bottomMargin NMTOKEN "30"
isTitleNewPage (true | false) "false"
isSummaryNewPage (true | false) "false"
scriptletClass NMTOKEN #IMPLIED

>

Report Name

Every report design has to have a name. Its name is important because the library uses it when
generating files, especially when the default behavior is preferred for compiling, filling or exporting the
report.

The name of the report is specified using the name attribute of the <jasperReport> element and is
mandatory. Spaces are not allowed in the report name, which has to be one word.

Column Count

JasperReports allows creating reports with more than one column on each page, like in the following
picture, where we can see the layout of a report with two columns:

The JasperReports Ultimate Guide

Page 22

- figure 6 -

By default, the reporting engine creates report with one column on each page.

Print Order

For the reports having more that one column, is important to specify the order in which the columns
will be filled and this can be done using the printOrder attribute of the <jasperReport> element.

There are two possible situations:
� Vertical filling: Selecting this option will ensure the columns are filled from top to bottom and left

to right (printOrder="Vertical").
� Horizontal filling: Columns are filled from left to right and top to bottom

(printOrder="Horizontal").

The default print order is: printOrder="Vertical"

Page Size

There are two attributes at this level to specify the page size of the document that is going to be
generated: pageWidth and pageHeight.
Like all the other JasperReports attributes that represent element dimensions and position, those should
be specified in pixels. JasperReports uses the default Java resolution of 72 dots per inch.
This means that a pageWidth="595" will make about 8.26 inches, which is roughly the width of an
A4 paper.

The default page size corresponds to an A4 paper:

pageWith="595" pageHeight="842"

l e
ft

m
ar

g i
n

bottom margin

rig
h t

 m
ar

gi
n

top margin

co
lu

m
n

sp
ac

in
g

column width

PAGE HEADER

PAGE HEADER

COLUMN HEADER COLUMN HEADER

COLUMN FOOTER COLUMN FOOTER

DETAIL

DETAIL

DETAIL

DETAIL

DETAIL

DETAIL

DETAIL

DETAIL

PAGE HEADER

PAGE HEADER

COLUMN HEADER COLUMN HEADER

COLUMN FOOTER COLUMN FOOTER

DETAIL

DETAIL

DETAIL

DETAIL

DETAIL

DETAIL

DETAIL

DETAIL

VERTICAL FILLING HORIZONTAL FILLING

The JasperReports Ultimate Guide

Page 23

Page Orientation

The orientation attribute is used to specify whether we are creating documents using the "Portrait"
or the "Landscape" formats.

JasperReports requires you to adapt the page width and the page height when switching from "Portrait"
documents to "Landscape" or vice-versa.

Let's see an example:
We assume that we want to create an A4 report using the "Portrait" layout.
An A4 has approximately this size:

pageWidth="595" pageHeight="842" orientation="Portrait"

If we decide to use the "Landscape" layout for our A4 document, we have to make sure we modify the
page with and page height accordingly, like in the following:

pageWidth="842" pageHeight="595" orientation="Landscape"

This is because JasperReports has to know exactly the absolute width and height of the pages it will
draw on, and does not necessarily consider the value that we supply in the orientation attribute, at least
not at report filling time.

This orientation attribute is only useful at report printing time, to inform the printer about the page
orientation or in some special exporters.

The default page orientation is "Portrait".

Page Margins

Once the page size decided, you can specify what margins should the reporting engine preserve when
generating the reports. And there are 4 attributes for the job: topMargin, leftMargin,
bottomMargin and rightMargin (figure 6).

There is a 20 pixels default margin for the top and bottom of the page and a 30 pixels default margin
for the right and left margins.

Column Size and Spacing

Reports may have more that one column, as we have already seen when we have talked about the
columnCount attribute above.
But the reporting engine has to know how large a column can be and what space should it let between
columns. There are two attributes for this job: columnWidth and columnSpacing.

There is also a validation check performed when we compile the report designs, that do not let us create
reports in which the width of the overall columns and the space between does not fit on the specified
page width and page margins.

Since there is only one column by default, the default column spacing is 0 pixels and the default
column width is equal to the default page width, minus the default left and right margins, which make
555 pixels.

Empty Data Source Behavior

Sometimes the data source that we supply to our reports has no records in it. In this case, it is not clear
what the output should be.

The JasperReports Ultimate Guide

Page 24

Some may expect to see a blank document in these situations and others might want to have some of
the report sections displayed anyway.

There is an attribute called whenNoDataType that lets you decide how the generated document should
look when there is no data in the data source supplied to it.

There are 3 possibilities you can choose from:
� Empty document: The generated document will have no pages in it. Viewers might throw an error

when trying to load such documents (whenNoDataType="NoPages").
� Blank page: The generated document will contain a single blank page

(whenNoDataType="BlankPage").
� All sections displayed: All the report sections except the detail section will appear in the generated

document (whenNoDataType="AllSectionsNoDetail").

The default value for this attribute is whenNoDataType="NoPages".

Title and Summary Sections Placement

If you want to have the title section or the summary section displayed on separate pages, all you have to
do is to set one or both of the following attributes to "true": isTitleNewPage and
isSummaryNewPage.

Both this boolean attributes are set to false by default.

Note that even if you choose to display the summary section on the remaining space of the
last page, a new page will automatically be started if the report has more than one column
and the second column was already started on this last page.

Scriptlet Class

The scriptletClass attribute lets you specify the name of the scriptlet class designed for the current
report. You learn more about scriptlets in the 7 Scriptlets chapter of this book dedicated to them.

If no value is supplied to this attribute, the reporting engine will use a
dori.jasper.engine.JRDefaultScriptlet instance anyway.

The JasperReports Ultimate Guide

Page 25

5 Report Data

When we have talked about the report filling process, we have said that there are those 3 things that
have to be supplied as input to it: the report design, the parameter values and the data source of the
report.

In the previous chapter we have already seen some of the aspects regarding the reports designs and now
we are going to take a close look at the other two: the parameters and the report data source. They
represent the only source of data that the reporting engine will use when filling the report.
This data will be organized according to the template defined in the report design and will produce a
ready to print, page oriented document, as you might expect from any reporting tool.

5.1 Expressions

Expressions are a powerful feature of JasperReports. They can be used for declaring report variables
that perform various calculations, for data grouping on the report, to specify report text fields content or
to further customize the appearance of objects on the report.

Basically, all report expressions are Java expressions that can reference report parameters, report fields
and report variables, using a special syntax.

In an XML report design there are several elements that define expressions:
<variableExpression>, <initialValueExpression>, <groupExpression>,
<printWhenExpression>, <imageExpression>, <textFieldExpression> and others.

Since all the JasperReports expressions are real Java expressions, you can use in them any class that
you might want to, as long as you refer to it using its complete class name (including the package). You
also have to make sure the classes you are using in the report expressions are available in the classpath
when you compile your report and when you fill it with data.

The report expressions would be useless, if there would be no way to reference in them the report
parameters, the report fields or the declared report variables. Fortunately, there is a special
JasperReports syntax that allows you to introduce such references in the expressions you create in the
XML report design.

Report parameter references are introduced using the $P{} character sequence like in the following
example:

<textFieldExpression>
 $P{ReportTitle}
</textFieldExpression>

This example assumes that we have a report parameter called ReportTitle declared in the report
design, who's class is java.lang.String. The text field will display the value of this parameter when
the report will be filled.

In order to use a report field reference in an expression, the name of the field must be put between $F{
and } character sequences. For example, if we want to display in a text field, on the report, the
concatenated values of two data source fields, we can define an expression like this one:

<textFieldExpression>
 $F{FirstName} + " " + $F{LastName}
</textFieldExpression>

The JasperReports Ultimate Guide

Page 26

The expression can be even more complex:

<textFieldExpression>
 $F{FirstName} + " " + $F{LastName} + " was hired on " +
 (new SimpleDateFormat("MM/dd/yyyy")).format($F{HireDate}) + "."
</textFieldExpression>

To reference a report variable in an expression, we must put the name of the variable between $V{ and
} like in the example below:

<textFieldExpression>
 "Total quantity : " + $V{QuantitySum} + " kg."
</textFieldExpression>

As you can see, the parameter, field and variable references introduced by the special JasperReports
syntax are in fact real Java objects. And knowing their class from the parameter, field or variable
declaration mate in the report design, we are able to even call methods on those object references in our
expressions.

Here's how we might be able to extract and display the first letter from a java.lang.String report
field:

<textFieldExpression>
 $F{FirstName}.substring(0, 1)
</textFieldExpression>

5.2 Parameters

Parameters are object references that are passed-in to the report filling operations. They are very useful
for passing to the report engine data that it can not normally find in its data source.
For example, we could pass to the report engine the name of the user that has launched the report filling
operation, if we want it to appear on the report, or we could dynamically change the title of our report.

XML Syntax

<!ELEMENT parameter (parameterDescription?, defaultValueExpression?)>

<!ATTLIST parameter
name NMTOKEN #REQUIRED
class NMTOKEN #REQUIRED
isForPrompting (true | false) "true"

>

<!ELEMENT parameterDescription (#PCDATA)>

<!ELEMENT defaultValueExpression (#PCDATA)>

Declaring a parameter in a report design is very simple and it requires specifying only its name and its
class:

<parameter name="ReportTitle" class="java.lang.String"/>
<parameter name="MaxOrderID" class="java.lang.Integer"/>
<parameter name="SummaryImage" class="java.awt.Image"/>

The supplied values for the report parameters can be used in the various report expressions, in the
report SQL query or even in the report scriptlet class. We are going to see all this in the following
special sections of this book that will tread each report expression, the query and the scriptlets.

Here are the components that make a report parameter definition complete:

The JasperReports Ultimate Guide

Page 27

Parameter Name

The name attribute of the <parameter> element is mandatory and allows referencing the parameter by
its declared name. The naming conventions of JasperReports are similar to the naming conventions of
the Java language, in regards with variable declaration. That means that the parameter name should be
a single word, with no special characters in it, like a dot or a comma.

Parameter Class

The second mandatory attribute for a report parameter is the one who specifies the class name for the
parameter values. The class attribute can have any value as long it represents a class name that is
available in the classpath both at report compile time and report filling time.

Prompting for Parameter Values

In some GUI applications, it would be useful to have a way to establish the set of the report parameters
for which the application should request user input, before launching the report filling process.
It would be also useful to have a way to specify the text description that would prompt for the user
input for each of those parameters.

This is why we have the boolean isForPrompting attribute in the parameter declaration sequence and
the inner <parameterDescription> element.

In the following example, we can see the declaration of a text parameter, along with the description that
could be used at runtime when requesting for the user to input the parameter value, in a custom made
dialog window:

<parameter name="Comments" class="java.lang.String" isForPrompting="true">
 <parameterDesciption>
 <![CDATA[
 Please type here the report comments if any
]]>
 </parameterDesciption>
</parameter>

You have probably noticed the <![CDATA[and]]> character sequences that delimit the
parameter description. Those are part of the XML specific syntax that will instruct the
XML parser to not parse the text inside. This allows you to use XML special characters
like the >, <, " and others in your texts. You'll see this syntax used in other examples
throughout this book and the samples.

Parameter Default Value

The parameter values are supplied to the report filling process packed in a java.util.Map object
with the parameter names as the keys. In this way you are not obliged to supply a value for each
parameter every time, if you don't want to.
If you do not supply a value for a parameter, its value will be considered to be null. But not if you are
specifying a default value expression in the report design, for this particular report parameter. This
expression is only evaluated in case you don't supply a value for the given parameter.

Here's a java.util.Date parameter whose value will be the current date, if you do not supply a
specific date value when filling the report:

<parameter name="MyDate" class="java.util.Date">
 <defaultValueExpression>
 new java.util.Date()
 </defaultValueExpression>
</parameter>

The JasperReports Ultimate Guide

Page 28

In the default value expression of a parameter, we can only use previously defined report parameters.

5.2.1 Built-in Report Parameters

Every report design contains some predefined report parameters, along with the ones that the report
design creator decides to introduce.
These built-in parameters are presented below.

Parameter REPORT_PARAMETERS_MAP

This is a built-in parameter that will always point to the java.util.Map object that contains the user-
defined parameters that we pass when calling the report filling process.

This parameter is especially useful when you want to pass to the subreports the same set of report
parameters that the master report has received.

Parameter REPORT_CONNECTION

This report parameter points to the java.sql.Connection object that was supplied to the engine in
order to use for the execution through JDBC of the SQL report query, if it is the case.

It has a value different than null only if the report (or subreport) has indeed received a
java.sql.Connection when the report filling process was launched and not a
dori.jasper.engine.JRDataSource instance.

This is also useful for passing to the subreports the same JDBC connection object that was used by the
master report. You can see this in action in the supplied subreport sample.

Parameter REPORT_DATASOURCE

When filling a report, we always have a data source object either directly supplied by the parent
application or created behind the scenes by the reporting engine when a JDBC connection is supplied.
This built-in parameter will allow us access to the report's data source in the report expressions or in the
scriptlets, for any reason we might have to do that.

Parameter REPORT_SCRIPTLET

Even if the report does not use scriptlets, this built-in parameter will point to a
dori.jasper.engine.JRAbstractScriptlet instance, which is a
dori.jasper.engine.JRDefaultScriptlet object, in this case.

But when using scriptlets, this reference to the scriptlet class instance that is created when filling the
report would allow calling specific methods on it, to manipulate or to use the data that the scriptlet
object has prepared during the filling process. This is shown on the last page of the scriptlet sample
report when we make a call to this scriptlets object.

The JasperReports Ultimate Guide

Page 29

5.3 Data Source

When filling the report, the JasperReports engine iterates through the records of the supplied data
source object and generates every section according to the template defined in the report design.

Normally, the engine expects to receive a dori.jasper.engine.JRDataSource object as the data
source of the report that it has to fill. But as we shall see, there is a feature that lets users supply a
JDCB connection object instead of the usual data source object, when the report data is found in a
relational database.

The dori.jasper.engine.JRDataSource interface is very simple and we have to deal with only
two methods if we want to implement it:

public boolean next() throws JRException;

public Object getFieldValue(JRField jrField) throws JRException;

The next() method is called on the data source object by the reporting engine when iterating through
the data, at report filling time. The second method listed provides the value for each report field in the
current data source record.

It is very important to know that the only way to retrieve data from the data source is by using the
report fields. A data source object is more like a table with columns and rows containing data in the
table cells. The rows of this table are the records through which the reporting engine iterates when
filling the report and each column should be mapped to a report field, so that we can make use of the
data source content in the report expressions.

There are several default implementations of the dori.jasper.engine.JRDataSource interface,
and we shall take a closer look to each of them:

Class dori.jasper.engine.JRResultSetDataSource

This is a very useful implementation of the dori.jasper.engine.JRDataSource interface,
because it wraps a java.sql.ResultSet object. With the majority of reports being generated using
data located in relational databases, it is very likely that this is the most used implementation for the
data source interface.

What is interesting to know is that you might end up using it even if you do not instantiate yourself this
class, when filling your reports. This is what happens:

If you choose to specify in your report design, the SQL query to retrieve the report data from certain
tables located in a relational database, the reporting engine will do that for you by executing the
specified SQL query and wrapping the returned java.sql.ResultSet object in a
dori.jasper.engine.JRResultSetDataSource instance. The only thing the engine would need
is a java.sql.Connection object for it to execute the query as mentioned. You supply this
connection object instead of supplying the usual data source object.

This can be seen in samples like jasper, scriptlet, subreport and query.

Of course, you could execute the SQL query in the parent application, outside JasperReports, if you
want to or the situation forces you to. And then you could manually wrap the java.sql.ResultSet
obtained, using an instance of this data source class, before calling the report filling process.

The most important thing you should know when using this type of data source is that you have to
declare a report field for each column in the result set. The name of the report field has to be same as
the name of the column it maps as well as the data type.
For maximum portability, as stated in the JDBC documentation, the values from a
java.sql.ResultSet object should be retrieved from left to right and only once, so in order to do
that you might consider declaring the report fields in the same order as they appear in the SQL query.

The JasperReports Ultimate Guide

Page 30

Class dori.jasper.engine.JREmptyDataSource

As already mentioned, this implementation is a very handy one, since it allows generating reports in
which the data do not necessarily comes from the data source, but probably from the parameters and
only the number of the virtual records in the data source is important.

Many of the provided samples such as fonts, images, shapes and unicode use an instance of this class
when filling the reports, to simulate a data source with one record in it, but with all the fields null.

Class dori.jasper.engine.data.JRTableModelDataSource

This default implementation of the dori.jasper.engine.JRDataSource interface wraps a
javax.swing.table.TableModel object and can be used in Java Swing application to generate
reports using data that has already been loaded into on-screen tables.

There are two ways to use this type of data source:

Normally, in order to retrieve data from it, you have to declare a report field for each column in the
javax.swing.table.TableModel object, baring the same name as the column it maps.
But sometimes this is impossible since the report fields have to respect the Java naming conventions for
declaring variables and the table columns do not necessarily do that.

Fortunately, you can still map such columns into report fields using their index instead of their names.
For example, a table column named "Product Description" could never be mapped into a report field
named "Product Description", because of the repot compiling error you will get due to the space
character present in the report field name.
But if you know that this particular column is the third column in the table model object (index = 2),
then you could name the corresponding field "COLUMN_2" and use the column data without
problems.

An example is provided in the datasource sample.

Class dori.jasper.engine.data.JRBeanArrayDataSource

This implementation that is also shipped with the library wraps an array of JavaBeans and uses
reflection to retrieve report field values.

A JavaBean object represents one record in this type of data source. If we have a report field name
"ProductDescription", when retrieving the value for this field, the program will try to call through
reflection a method called getProductDescription() on the current JavaBean object.

For the boolean fields, the program will also try the is prefix, if the usual get prefix for the JavaBean
object properties fails to return a value, as stated in the JavaBeans specifications.

This class is used for demonstrative purposes in the datasource sample.

Class dori.jasper.engine.data.JRBeanCollectionDataSource

This implementation of the dori.jasper.engine.JRDataSource interface is very similar to the
previous one in that it uses reflection and the JavaBeans naming conventions, but wraps a
java.util.Collection object in stead of an array of JavaBean objects.

You can see this class being used also in the datasource sample provided with the project.

The JasperReports Ultimate Guide

Page 31

5.4 Report Query

In order to fill a report, we have to provide the reporting engine with the report data, or at least instruct
it about how to get this data for us.

JasperReports normally expects to receive a dori.jasper.engine.JRDataSource object as the
report data source, but it was also enhanced to work with JDBC so that it can retrieve data from relation
databases if required.

The library allows users to specify in their report design, the SQL query that should be executed at
runtime to retrieve the report data, if this data is located in relational databases, which is a very
common situation.

The SQL query specified in the report design is taken into account and executed only if a
java.sql.Connection object is supplied instead of the normal
dori.jasper.engine.JRDataSource object when filling the report.

This query can be introduced in the XML report design using the <queryString> element. If present,
this element comes after the report parameter declarations and before the report fields.

XML Syntax

<!ELEMENT queryString (#PCDATA)>

Here's is a simple SQL query that will retrieve data from a table called Orders placed in a relational
database:

<queryString><![CDATA[SELECT * FROM Orders]]></queryString>

An import aspect is the use of report parameters in the query string of the report, in order to be able to
further customize the data set retrieved from the database. Those parameters could act like dynamic
filters in the query that supplies data for the report and are introduced using a special syntax, similar to
the one used in report expressions.

There are two possible ways to use parameters in the query:

 1. The parameters are used like normal java.sql.PreparedStatement parameters, using the
following syntax:

<queryString>
 <!CDATA[
 SELECT * FROM Orders WHERE OrderID <= $P{MaxOrderID} ORDER BY ShipCountry
]]>
</queryString>

 2. Sometimes is useful to use parameters to dynamically modify portions of the SQL query or to pass
the entire SQL query as a parameter to the report filling routines. In such a case, the syntax differs a
little, like in the following example. Notice the ! character:

<queryString>
 <!CDATA[
 SELECT * FROM $P!{MyTable} ORDER BY $P!{OrderByClause}
]]>
</queryString>

What is different in this second example? The parameters used make it for the missing table name in
the FROM clause and the missing column names in the ORDER BY clause. You cannot use normal IN
parameters to dynamically change portions of your query that you execute using a
java.sql.PreparedStatement object, and this seems to be the case here.

The JasperReports Ultimate Guide

Page 32

The special syntax that introduces the parameter values in this example makes sure that the value that
we supply for those parameters will replace the parameter references in the query, before it is sent to
the database server using a java.sql.PreparedStatement object.

In fact what happens is that the reporting engine first deals with the $P!{} parameter references by
using their values to obtain the final form of the SQL query and only after that will transform the rest of
the $P{} normal parameter references into usual IN parameters used when working with JDBC
prepared statements.

For more details about what type of parameters you have to use in your report queries, you have to be
more familiar with the JDBC technology and especially with the use of the
java.sql.PreparedStatement interface and its parameters.

This second type of parameter reference used in the SQL query allows you to pass the entire SQL
query at runtime if you like:

<queryString>$P!{MySQLQuery}</queryString>

You cannot put other parameter references into a parameter value. That is, when
supplying the entire SQL query as a report parameter, the engine does not expect to find
parameter references in the query you send to it and considers this query to be finished
and ready to send "as is", to the database server.

Some of the provided samples like jasper, subreport, scriptlet, and webapp use internal SQL queries to
retrieve data. From this point of view, the most interesting sample for you to check is the one called
query.

5.5 Fields

The report fields represent the only way to map data from the data source into the report design and to
use this data in the report expressions, to obtain the desired output.

When declaring report fields, you have to make sure that the data source you will supply at report
filling time will be able to provide values for all those fields.
For example, in case you use the dori.jasper.engine.JRResultSetDataSource
implementation, and this happens when the report's SQL query is used, you have to make sure there
will be a column for each field in the result set obtained after the execution of the query. The
corresponding column has to bare the same name and have the same data type as the filed that maps it.

XML Syntax

<!ELEMENT field (fieldDescription?)>

<!ATTLIST field
name NMTOKEN #REQUIRED
class (java.lang.Object | java.lang.Boolean | java.lang.Byte |

java.util.Date | java.sql.Timestamp | java.lang.Double | java.lang.Float |
java.lang.Integer | java.io.InputStream | java.lang.Long | java.lang.Short |
java.math.BigDecimal | java.lang.String) "java.lang.String"
>

<!ELEMENT fieldDescription (#PCDATA)>

Here's small example that shows what fields you have to declare to map the columns of a certain
database table. We shall consider a table called Employees, with the following structure:

The JasperReports Ultimate Guide

Page 33

Column Name Data Type Length
EmployeeID int 4
LastName varchar 50
FirstName varchar 50
HireDate datetime 8

The report fields should declare the field as seen below:

<field name="EmployeeID" class="java.lang.Integer"/>
<field name="LastName" class="java.lang.String"/>
<field name="FirstName" class="java.lang.String"/>
<field name="HireDate" class="java.util.Date"/>

If we declare a field that does not have a corresponding column in the result set, an exception will be
thrown at runtime. The columns that are present in the result set produced by the execution of the SQL
query that do not have corresponding fields in the report design, do not affect the report filling
operations, but they also wont be accessible for display on the report.

Here are the components of a report field definition:

Field Name

The name attribute of the <field> element is mandatory and allows referencing the field in report
expressions, by its declared name, which should be a single word, without special characters in it, like a
dot or a comma.

Field Class

The second attribute for a report field is the one who specifies the class name for the field values.
Its default value is java.lang.String, but it can be changed to one of the following acceptable class
names:

java.lang.Object
java.lang.Boolean
java.lang.Byte
java.util.Date
java.sql.Timestamp
java.lang.Double
java.lang.Float
java.lang.Integer
java.io.InputStream
java.lang.Long
java.lang.Short
java.math.BigDecimal

When working with custom made data sources that have fields with values that are instances of custom
made classes, the class name of those particular fields should be java.lang.Object, because unlike
the parameter definitions, you can only chose a class name from the above list.
When working with those fields in the report expressions, you can cast them to their known class,
making sure that class is available in the classpath, both at report compiling time and report filling
time.

Field Description

This additional text chunk that can accompany a field might prove very useful when implementing a
custom data source for example. You could store in it a key or whatever information you might need in
order to retrieve the field's value from the custom data source at runtime.

The JasperReports Ultimate Guide

Page 34

By using this optional <fieldDesciption> element, you could easily overcome restrictions
regarding the field naming conventions, using the field description instead of the field name, when
retrieving the field values from the data source.

<field name="PersonName" class="java.lang.String" isForPrompting="true">
 <fieldDesciption>PERSON NAME</fieldDesciption>
</field>

5.6 Variables

Report variables are special objects build on top of a report expression. They can be used to simplify
the report design by declaring only once an expression that is heavily used throughout the report design
or to perform various calculations on the corresponding expression.

XML Syntax

<!ELEMENT variable (variableExpression?, initialValueExpression?)>

<!ATTLIST variable
name NMTOKEN #REQUIRED
class NMTOKEN "java.lang.String"
resetType (None | Report | Page | Column | Group) "Report"
resetGroup CDATA #IMPLIED
calculation (Nothing | Count | Sum | Average | Lowest | Highest |

StandardDeviation | Variance | System) "Nothing"
>

<!ELEMENT variableExpression (#PCDATA)>

<!ELEMENT initialValueExpression (#PCDATA)>

In its expression, a variable can reference other report variables, but only if those referenced variables
were previously defined in the report design. So, the order in which the variables are declared in a
report design is very important.

Variable Name

Just like for the parameters and fields, the name attribute of the <variable> element is mandatory and
allows referencing the variable by its declared name in the report expressions. The naming conventions
that we mentioned for the parameters and fields also apply to variables.

Variable Class

The class attribute contains the class name of the class to which the variable values belong. The default
is java.lang.String, but you can declare report variables of any class you might want to as long as
the class you chose is available in the classpath, both at report compilation time and report filling time.

Reset Type

The value of a report variable can change with every iteration, but it can be brought back to the value
returned by its initial value expression at specified moments in time, during the report filling process.
This behavior is controlled using the resetType attribute, which indicates when the variable should be
reinitialized during the report filling process.

The JasperReports Ultimate Guide

Page 35

There are 5 reset types for a variable:
� No Reset: The variable will never be initialized using its initial value expression and will only

contain values obtain by evaluating the variable's expression (resetType="None").
� Report Level Reset: The variable is initialized only once, at the beginning of the report filling

process, with the value returned by the variable's initial value expression
(resetType="Report").

� Page Level Reset: The variable is reinitialized at the beginning of each new page
(resetType="Page").

� Column Level Reset: The variable is reinitialized at the beginning of each new column
(resetType="Column").

� Group Level Reset: The variable is reinitialized every time the group specified by the resetGroup
attributes breaks (resetType="Group").

The default value for this attribute is resetType="Report".

Reset Group

If present, the resetGroup attribute contains the name of a report group and works only in
conjunction with the resetType attribute, who's value must be resetType="Group".

5.6.1 Calculations

As mentioned, variables can perform built-in types of calculations on their corresponding expression
values. Here are all the possible values for the calculation attribute of the <variable> element:

Calculation Nothing

This is the default calculation type that a variable performs. It means that the variable's value is
recalculated with every iteration in the data source and that the value returned is obtained by simply
evaluating the variable's expression.

Calculation Count

A count variable will always count for the non-null values returned after evaluating the variable main
expression, with every iteration in the data source. Count variables must be always of a numeric type,
but they can have non-numeric expressions as their main expression, since the engine does not care
about the expression type, but only counts for the non-null values returned, regardless of their type.

Only the variable's initial value expression should be also numeric and compatible with the variable's
type, since this value will be directly assigned to the count variable when initialized.

Calculation Sum

The reporting engine can sum up the values returned by the variable's main expression if you choose
this type of calculation, but make sure the variable has a numeric type. We cannot calculate the sum of
a java.lang.String or java.util.Date type of a report variable.

Calculation Average

The reporting engine can also calculate the average for the series of values obtained by evaluating the
variable's expression for each record in the data source. This type of calculation can also be performed
only for numeric variables.

The JasperReports Ultimate Guide

Page 36

In order to calculate the average, the engine creates behind the scenes a helper report variable that
calculates the sum of the values and uses it to calculate the average for those values. This helper sum
variable gets its name from the corresponding average variable suffixed with "_SUM" sequence.

For example, if you declare an average calculating variable named MyAverageVariable for some
numeric expression, the reporting engine will also create a report variable MyAverageVariable_SUM
to help calculating the average.

You can use the helper variables in other report expressions, if you want to, just like you would have
declared them yourself.

The reporting engine also needs a count variable along with the helper sum variable, in order to
calculate the average. But for "Report", "Page" and "Column" reset types, it makes use of the built-in
count variables that we shall see in the following section (5.6.2 Built-in Report Variables). For the
resetType="Group" case, it creates a helper count variable, behind the scenes, with the "_COUNT"
suffix added to the original average variable name. This is because it cannot use the built-in group
count variable due to the order in which the variables are declared and thus evaluated.

Calculation Lowest and Highest

You can choose this type of calculation when you want to obtain the lowest or the highest value in the
series of values obtained by evaluating the variable's expression for each data source record.

Calculation StandardDeviation and Variance

In some special reports, you might want to perform more advanced types of calculations on numeric
expression and JasperReports has built-in algorithms to obtain the standard deviation and the variance
for the series of values returned by evaluation a report variable's expression.

Just like for the variables that calculate the average, the engine creates and uses helper report variables
for first obtaining the sum and the count that correspond to your current series of values. The name for
those helper variables that are created behind the scenes is obtained by suffixing the user variable with
the "_SUM" or "_COUNT" suffix and they can be used in other report expressions like any other report
variable.

For variables that calculate the standard deviation, there is always a helper variable present, that first
calculates the variance for the series of values and it has the "_VARIANCE" suffix added to its name.

Calculation System

This type of calculation can be chose only when you don't want the engine to take care of calculating
any value for your variable. That means you are calculating the value for that variable yourself, almost
certainly using the scriptlets functionality of JasperReports.

For this type of calculation, the only thing the engine does is to conserve the value you have calculated
yourself, from one iteration in the data source, to the next.

Examples:

Here is a simple report variable declaration that calculates the sum for a numeric report field called
"Quantity":

<variable name="QuantitySum" class="java.lang.Double" calculation="Sum">
 <variableExpression>$F{Quantity}</variableExpression>
</variable>

The JasperReports Ultimate Guide

Page 37

If we want to have the sum of this field for each page, here's the complete variable declaration required:

<variable name="QuantitySum" class="java.lang.Double" resetType="Page"
calculation="Sum">
 <variableExpression>$F{Quantity}</variableExpression>
 <initialValueExpression>new Double(0)</initialValueExpression>
</variable>

In this example above, our page sum variable will be initialized with zero at the beginning of each new
page.

5.6.2 Built-in Report Variables

There are also the following built-in system variables, ready to use in expressions:

Variable PAGE_NUMBER

This variable contains as its value the current page number. At the end of the report filling process, it
will contain the total number of pages for the resulting document.

It can be used to display both the current page number and the total number of pages using a special
feature of the JasperReports text field elements, which is the evaluationTime attribute. You can see
this happening in most of the sample. Check the jasper sample for an example.

Variable COLUMN_NUMBER

Built-in variable that contains the current column number.
For example, on a report with 3 columns, on the second page, we shall probably have columns #4, #5
and #6, if attributes such as isTitleNewPage and other do not intervene.

Variable REPORT_COUNT

After the finishing the iteration through the data source, this report variable contains the total number
of the records that were processed.

Variable PAGE_COUNT

This variable contains the number of records that were processed when generating the current page.

Variable COLUMN_COUNT

This variable contains the number of records that were processed when generating the current column.

Variable GroupName_COUNT

When declaring a report group, the engine will automatically create a count variable that will calculate
the number of records that make up the current group (number of records processed between group
ruptures).

The name for this variable comes from the name of the group it corresponds to, suffixed with the
"_COUNT" sequence. It can be use like any other report variable, in any report expression (even in the
current group expression like you can see done in the "BreakGroup" of the jasper sample).

The JasperReports Ultimate Guide

Page 38

6 Report Sections

When building a report design we need to define the content and the layout of its sections. The entire
structure of the report design is based on the following sections: <title>, <pageHeader>,
<columnHeader>, <groupHeader>, <detail>, <groupFooter>, <columnFoter>,
<pageFooter>, <summary>.

Sections are portions of the report template that have a specified height and width and can contain
report elements like lines, rectangles, images or text fields. Those sections are filled repeatedly at report
generating time and make up the final document that is being produced. When declaring the content
and layout of a report section, in an XML report design, we use the generic element <band>.

XML Syntax

<!ELEMENT band (printWhenExpression?, (line | rectangle | image | staticText
| textField | subreport | elementGroup)*)>

<!ATTLIST band
height NMTOKEN "0"

>

<!ELEMENT printWhenExpression (#PCDATA)>

Report sections are sometimes referred as report bands and represent a feature that almost all report
tools have and use in the same way.

Band Height

The attribute height available in a report band declaration specifies the height in pixels for that
particular band and is very important in the overall report design.

The elements contained by a certain report band should always fit the band's dimensions, to avoid
potential bad results when generating the reports. The engine issues a warning if it finds elements
outside the band borders, when compiling report designs.

Skipping Bands

All the report sections allow you to define a report expression that will be evaluated at runtime in order
to decide if that particular section should be generated or skipped, when producing the document.

This expression is introduced by the <printWhenExpression> that is available in any <band>
element of the XML report design and should always return a java.lang.Boolean object or null.

The JasperReports Ultimate Guide

Page 39

6.1 Main Report Sections

A minimal report design can contain no report section at all, because each one of them is optional. But
such a minimal report design won't produce very interesting documents.

XML Syntax

<!ELEMENT title (band?)>

<!ELEMENT pageHeader (band?)>

<!ELEMENT columnHeader (band?)>

<!ELEMENT detail (band?)>

<!ELEMENT columnFooter (band?)>

<!ELEMENT pageFooter (band?)>

<!ELEMENT summary (band?)>

So let's take a closer look at each report section and see how it behaves.

Title

This is the first section of the report. It is generated only once during the report filling process and
makes it for the beginning of the resulting document.

Being the first section of the report means that it will precede even the page header section. Those who
want to have the page header printed somehow before the title section will have to copy the elements
present on the page header also at the beginning of the title section. They could suppress the actual
page header on the first page using the <printWhenExpression>, based on the PAGE_NUMBER
report variable.

As we have already seen in the 4.3 Report Properties paragraph, the title section could be followed by
a page break, if the attribute isTitleNewPage is set to "true".

Page Header

This section appears at the top of each page in the generated document.

Column Header

This section appears at the top of each column in the generated document.

Detail

For each record in the data source, the engine will try to generate this section.

Column Footer

This section appears at the bottom of each column in the generated document. It never stretches
downward to acquire the content of its containing text fields and will always remain of declared fixed
height.

The JasperReports Ultimate Guide

Page 40

Page Footer

This section appears at the bottom of each page in the generated document. Just like the column footer
section above, the page footer never stretches downwards to acquire the content of its containing text
fields and will always remain of declared fixed height.

Summary

This section is generated only once per report and appears at the end of the generated document, but is
not necessarily the last section being generated.

That's because in some cases, the column footer or/and page footer of the last page can follow it.

As mentioned in the 4.3 Report Properties paragraph, the summary section can start a new page of its
own, by setting the isSummaryNewPage attribute to "true". Even if this attribute remains false, the
summary section always starts a new page if it does not fit on the remaining space of the last page or if
the report has more than one column and on the last page it has already started a second column.

If the main report sections that we have seen here are not sufficient for what you need, maybe you
should consider introducing supplementary sections like group headers and group footers.
We are now going to see how to group data on the report.

6.2 Data Grouping

Groups represent a flexible way to organize data on a report. A report group is represented by sequence
of consecutive records in the data source that have something in common, like the value of a certain
report field for example.

A report group has 3 components:
� group expression;
� group header section;
� group footer section.

The value of the associated group expression is what makes group records stick tighter. This value is
the thing that they have in common. When the value of the group expression changes during the
iteration through the data source at report filling time, a group rupture occurs and the corresponding
group sections <groupFooter> and <groupHeader> are inserted in the resulting document.

We can have as many groups as we want on a report. The order of groups declared in a report design is
important because groups contain each other. One group contains the following group and so on. And
when a larger group encounters a rupture, all subsequent groups are reinitialized.

Data grouping works as expected only when the records in the data source are already
ordered accordingly to the group expressions used in the report.
For example, if you want to group some products by country and city of the manufacturer,
the engine expects to find the records in the data source already ordered by country and city.
If not, you should expect to find records belonging to a specific country or city in different
parts of the resulting document, because JasperReports does not sort the data source for you,
before using it.

The JasperReports Ultimate Guide

Page 41

XML Syntax

<!ELEMENT group (groupExpression?, groupHeader?, groupFooter?)>

<!ATTLIST group
name NMTOKEN #REQUIRED
isStartNewColumn (true | false) "false"
isStartNewPage (true | false) "false"
isResetPageNumber (true | false) "false"
isReprintHeaderOnEachPage (true | false) "false"
minHeightToStartNewPage NMTOKEN "0"

>

<!ELEMENT groupExpression (#PCDATA)>

<!ELEMENT groupHeader (band?)>

<!ELEMENT groupFooter (band?)>

Group Name

The name unequivocally identifies the group and can be used in other XML attributes, when you want
to refer a particular report group. The name of a group is mandatory and obeys the same naming
convention that we mentioned for the report parameters, fields and report variables.

Starting New Page/Column When Group Breaks

Sometimes is useful to introduce a page or column break when a new group starts, probably because
that particular group is more important and should start on a page or column of its own.
To instruct the engine to start a new page or column for a certain group, instead of going to print it on
the remaining space at the bottom of the page or column, you have to set to "true" either the
isStartNewPage or isStartNewColumn attribute.

Those two attributes are the only settings in the entire library that let you voluntary
introduce page breaks. In all other situation, the reporting engine introduces page breaks
automatically, if it needs to.
However, in some report designs, you probably want to introduce page breaks on purpose,
because some particular report section of yours is larger than one page. You can achieve that
by introducing special dummy groups as you can see in the Tips & Tricks section of the
freely available documentation, published on the JasperReports site.

However, if you don't want to consistently introduce page or column breaks for a particular group, but
you rather do that only if the remaining space at the bottom of the page or column is too small, you
should consider using the minHeightToStartNewPage attribute.
This attribute specifies the minimum amount of remaining vertical space required so that the group
does not start a new page of its own. It is measured in pixels.

Resetting Page Number

If required, report groups have the power to reset the built-in report variable which contains the current
page number (variable PAGE_NUMBER). This could be achieved by setting the isResetPageNumber
attribute to "true".

http://jasperreports.sourceforge.net/tips.tricks.html#largebands
http://jasperreports.sourceforge.net/

The JasperReports Ultimate Guide

Page 42

Group Header

This section is the one that marks the start of a new group in the resulting document, and it is inserted
in the document every time the value of the group expression changes during the iteration through the
data source.

Group Footer

Every time a report group changes, the engine adds the corresponding group footer section before
starting the new group or when the report ends.

Check the provided samples like jasper, datasource or query, to see how report groups can be used.

The JasperReports Ultimate Guide

Page 43

7 Scriptlets

All the data displayed on a report comes from the report parameters and from the report fields. This
data can be processed using the report variables and their expressions.
There are specific moments in time when variable processing occurs. Some variables are initialized
according to their reset type when the report starts, or when a page or column break is encountered, or
when a group changes. Furthermore, variables are evaluated every time new data is fetched from the
data source (for every row).

But only simple variable expressions cannot always implement complex functionality. This is where
scriptlets intervene. Scriptlets are sequences of Java code that are executed every time a report event
occurs. Through scriptlets, users have the possibility to affect the values stored by the report variables.
Since scriptlets work mainly with report variables, is important to have full control over the exact
moment the scriptlet is executed.

JasperReports allows the execution of custom Java code BEFORE or AFTER it initializes the report
variables according to their reset type: Report, Page, Column or Group.
In order to make use of this functionality, users only have to create a scriptlet class by extending one of
the following two classes:

dori.jasper.engine.JRAbstractScriptlet
dori.jasper.engine.JRDefaultScriptlet

The complete name of this custom scriptlet class (including the package) has to be specified in the
scriptletClass attribute of the <jasperReport> element and has to be available in the classpath,
at report filling time, so that the engine could instantiate it on the fly. If no value is specified for the
scriptletClass attribute, the engine will instantiate the JRDefaultScriptlet class.

When creating a JasperReports scriptlet class, there are several methods that developers should
implement or override, like: beforeReportInit(), afterReportInit(), beforePageInit(),
afterPageInit(), beforeGroupInit(), afterGroupInit(), etc. Those methods will be called
by the report engine at the appropriate time, when filling the report.

For more complex reports, if you need to use very complicate report expressions, for grouping or
displaying data, maybe you should consider transferring this complexity to a separate class to which
you then make calls from simplified report expressions. The scriptlet class is perfect for transferring
this complexity to. This is because the reporting engine supplies you with a reference to the scriptlet
object it creates on the fly using the REPORT_SCRIPTLET built-in parameter.

Check the scriptlet sample to see this type of functionality used.

The JasperReports Ultimate Guide

Page 44

8 Report Elements

The generated reports would be empty if you would not put some report elements in the report design.
The report elements are displayable objects like static texts, text fields, images, lines or rectangles, that
you put in your report design sections so that they appear in the final document.

As you can see, the report elements come in two flavors:
� Text elements: static texts and text fields that display dynamic content;
� Graphic elements: lines, rectangles and images.

We shall see those two element categories and their particularities in the following sections. For now
we are going to present in detail the element properties that both categories share.

When you add a report element to one of your report sections, you have to specify the relative position
of this element in that particular section and its size, along with other general report element properties
like color, transparency, stretch behavior, etc.

The properties that are common to all types of report elements are grouped in the <reportElement>
tag that can appear in the declaration of all report elements.

XML Syntax

<!ELEMENT reportElement (printWhenExpression?)>

<!ATTLIST reportElement
positionType (Float | FixRelativeToTop | FixRelativeToBottom)

"FixRelativeToTop"
isPrintRepeatedValues (true | false) "true"
mode (Opaque | Transparent) #IMPLIED
x NMTOKEN #REQUIRED
y NMTOKEN #REQUIRED
width NMTOKEN #REQUIRED
height NMTOKEN #REQUIRED
isRemoveLineWhenBlank (true | false) "false"
isPrintInFirstWholeBand (true | false) "false"
isPrintWhenDetailOverflows (true | false) "false"
printWhenGroupChanges CDATA #IMPLIED
forecolor CDATA #IMPLIED
backcolor CDATA #IMPLIED

>

<!ELEMENT printWhenExpression (#PCDATA)>

Absolute Position

The x and y attributes of any report element are mandatory and represent x and y coordinates,
measured in pixels, that mark the absolute position of the top-left corner of the specified element within
its parent report section.

Relative Position

Some report elements such as the text fields have special properties that allow them to stretch
downwards in order to acquire all the information they have to display. Their height is calculated at
runtime and may affect the other neighboring elements present in the same report section, especially
those placed immediately below them.

The positionType attribute specifies the behavior that the report element should have if the layout of
the report section in which it is been place is affected by stretch.

The JasperReports Ultimate Guide

Page 45

There are 3 possible values for the positionType attribute:
� Floating position: The element will float in its parent section if it is pushed downwards by other

elements fount above it. It will try to conserve the distance between it and the neighboring
elements placed immediately above (positionType="Float").

� Fixed position relative to the top of the parent band: The current report element will simply ignore
what happens to the other section elements and tries to conserve the y offset measured from the top
of its parent report section (positionType="FixRelativeToTop").

� Fixed position relative to the bottom of the parent band: If the height of the parent report section is
affected by elements that stretch, the current element will try to conserve the original distance
between its bottom margin and the bottom of the band
(positionType="FixRelativeToBottom").

A report element called e2 will float when another report element called e1 stretches, only
if these three conditions are met:

� e2 has postitionType="Float"
� e1.y + e1.height < e2.y
� e1.width + e2.width >= max(e1.x + e1.width, e2.x + e2.width) –

min(e1.x, e2.x)

The second and the third conditions together say that the element e2 must be placed below
the e1.

By default, all elements have a fixed position relative to the top of the band.

To see how element stretching and element floating work together, check the stretch sample provided.

Element Size

The width and height attributes are mandatory and represent the size of the report element measured
in pixels. Additional element settings that have to do with the element stretching mechanism will
determine the reporting engine to sometimes ignore the specified element height. But this attribute
remains mandatory since even when the height is calculated dynamically, the element will not be
smaller than the original specified height.

Element Color

There are two attributes that represent colors: forecolor and backcolor. The fore color is the one
used to draw the text of the text elements and the border of the graphic elements. The back color is the
one used to fill the background of the specified report element, if it is not transparent.

You could specify colors using the decimal or hexadecimal representation of the integer number
corresponding to the desired color. The preferred way to specify colors in XML is using the
hexadecimal representation, because it allows controlling the level for each base color of the RGB
system.

For example, you can display some text in red if you set the forecolor attribute of the corresponding
text field like this:

forecolor="#FF0000"

The equivalent using the decimal representation would be:

forecolor="16711680"

but the inconvenience is evident.

The JasperReports Ultimate Guide

Page 46

The default fore color is black and the default back color is white.

Element Transparency

Report elements can be either transparent or opaque, depending on the value you specify for the
attribute mode.

The default value for this attribute depends on the type of the report element. Graphic elements like
rectangles and lines are opaque by default, but the images are transparent. Both static texts and text
fields are transparent by default, and so are the subreport elements.

Skipping Element Display

The engine can decide at runtime if it really should display a report element, if you use the
<printWhenExpression> that is available for all types of report elements.
If present, this report expression should return a java.lang.Boolean object or null and is evaluated
every time the section containing the current element is being generated, to see if this particular
element should appear or not in the report.
If the expression returns null, it is equivalent to returning java.lang.Boolean.FALSE and if the
expression is missing, the report element will get printed every time, that is if other setting do not
intervene, as we shall see below.

Reprinting Elements on Section Overflows

When generating a report section, the engine might be forced to start a new page or column, because
the remaining space at the bottom of the current page or column was not sufficient for all the section
elements to fit in, probably because some elements have stretched.

In such cases, you might want to reprint some of your already displayed elements, on the new page or
column, to recreate the context in which the page/column break occurred.
To achieve this, you have to set isPrintWhenDetailOverflows="true" for all those report
elements you want to reappear on the next page or column.

Suppressing Repeating Values Display

First, let's see what exactly a "repeating value" is.

It very much depends on the type of the report element we are talking about.

For text field elements, this is very intuitive. In the following list containing person names taken from
an usual phone book, you can see that for some consecutive lines, the value of the "Family Name"
column repeats itself (those are only dummy phone numbers �).

Family Name First Name Phone
Johnson Adam 256.12.35
Johnson Christine 589.54.52
Johnson Peter 546.85.95
Johnson Richard 125.49.56
Smith John 469.85.45
Smith Laura 459.86.54
Smith Denise 884.51.25

You might want to suppress the repeating "Family Name" values and print something like this:

The JasperReports Ultimate Guide

Page 47

Family Name First Name Phone
Johnson Adam 256.12.35

Christine 589.54.52
Peter 546.85.95
Richard 125.49.56

Smith John 469.85.45
Laura 459.86.54
Denise 884.51.25

You can do that, if for the text field that displays the family name, you set:

isPrintRepeatedValues="false"

The static text elements behave in the same way. As you would expect, their value always repeats and
in fact it never changes, until the end of the report. This is why we call them static texts. So, if you set
isPrintRepeatedValues="false" for one of your <staticText> elements, you should expect to
see it displayed only once, the first time, at the beginning of the report, and never again.

Now, what about graphic elements?

An image is considered to be repeating itself if its bytes are exactly the same from one occurrence to
the next. This could only happen if you choose to cache your images using the isUsingCache
attribute available in the <image> element and if the corresponding <imageExpression> returns the
same value from one iteration to the next (the same file name, the same URL, etc).

Lines and rectangles are always repeating themselves, because they are static elements, just like the
static texts we have seen above. So, when deciding to not display repeating values for a line or a
rectangle, you should expect to see it displayed only once, at the beginning of the report and then
ignored until the end of the report.

The isPrintRepeatedValues attribute works only if the corresponding
<printWhenExpression> is missing. If this is not missing, it will always dictate if the
element should be printed or not, regardless of the repeating values.

If you decide to not display the repeating values for some of your report elements, you have the
possibility to soften or refine this behavior, by indicating the exceptional occasions to which you might
want to have a particular value redisplayed, during the report generation process.

When the repeating value spans on multiple pages or columns, you have the possibility to redisplay this
repeating value at least once for every page or column.
By setting isPrintInFirstWholeBand="true", you make sure that the report element will
reappear in the first band of a new page or column that is not an overflow from a previous page or
column.

Also, if the repeating value you have suppressed spans on multiple groups, you have the possibility to
make it reappearing at the beginning of a certain report group, is you specify the name of that particular
group in the printWhenGroupChanges attribute.

Removing Blank Space

When report elements are not displayed for some reason: <printWhenExpression> evaluated to
Boolean.FALSE, or repeated value being suppressed, a blank space remains where that report element
would have stood.
This blank space also appears if a text field displays only blank characters or an empty text.

There is a way to eliminate this unwanted blank space, on the vertical axis, only if some conditions are
met.

The JasperReports Ultimate Guide

Page 48

For example, if you have three successive text fields, one on top of the other like this:

TextField1
TextField2
TextField3

If the second one has an empty string as its value, or contains a repeated value that you chose to
suppress, the output would look like this:

TextField1

TextField3

In order to eliminate the gap between the first text field and the third, you have to set
isRemoveLineWhenBlank="true" for your second text field. You would obtain something like this:

TextField1
TextField3

But there are certain conditions that have to be met in order for this functionality to work. The blank
space will not be removed, if your second text field shares some vertical space with other report
elements that are printed even this second text fields of your does not print.

For example, you might have some vertical lines on the sides of your report section like this:

| TextField1 |
| |
| TextField3 |

or you might have a rectangle that draws a box around your text fields:

| TextField1 |
| |
TextField3

or even other text elements that are placed on the same horizontal with your second text field:

Label1 TextField1
Label2
Label3 TextField3

In all those situations, the blank space between the first and the third text field cannot be remove,
because it is being used by other report elements that are printed as you can see.

The blank vertical space between elements can be removed using the isRemoveWhenBlank
attribute, only if it is not used by other elements, as explained above.

8.1 Text Elements

There are two kinds of text elements in JasperReports: static texts and text fields.
As their names suggest it, the first are text elements with a fixed, static content, who does not change
during the report filling process and are used especially for introducing labels on the final document.
Text fields however, have an associated expression, which is evaluated at runtime to produce the text
content that will be displayed.

Both types of text elements share some properties and those are introduced using a <textElement>
element. We are now going to see them in detail.

The JasperReports Ultimate Guide

Page 49

XML Syntax

<!ELEMENT textElement (font?)>

<!ATTLIST textElement
textAlignment (Left | Center | Right | Justified) "Left"
lineSpacing (Single | 1_1_2 | Double) "Single"

>

Text Alignment

You can specify how the content of a text element should be aligned using the textAlignment
attribute and choosing one of the 4 possible values: "Left", "Center", "Right" or "Justified".

Text Line Spacing

The amount of space between consecutive lines of text can be set using the lineSpacing attribute:
� Single: The paragraph text advances normally using an offset equal to the text line height

(lineSpacing="Single").
� 1.5 Lines: The offset between two consecutive text lines is of 1 ½ lines

(lineSpacing="1_1_2").
� Double: The space between text lines is double the height of a single text line

(lineSpacing="Double").

The font settings for the text elements are also part of the <textElement> tag, but we are going to see
them in detail, in the following separate section of this book.

8.1.1 Fonts and Unicode Support

Each text element present on your report can have its own font settings. Those settings can be specified
using the tag available in the <textElement> tag.

Since most of the time, in a report design, there are only a few types of fonts used, that are shared by
different text elements, there's no point forcing XML report design creators to specify the same font
settings for each text element, over and over again. But rather they could reference a report level font
declaration and adjust only some of the font settings, on the spot, if a particular text element requires it.

Report Fonts

A report font is in fact a collection of font settings declared at report level that can be reused
throughout the entire report design, when setting the font properties of text elements.

The JasperReports Ultimate Guide

Page 50

XML Syntax

<!ELEMENT reportFont EMPTY>

<!ATTLIST reportFont
name NMTOKEN #REQUIRED
isDefault (true | false) "false"
fontName CDATA "sansserif"
size NMTOKEN "10"
isBold (true | false) "false"
isItalic (true | false) "false"
isUnderline (true | false) "false"
isStrikeThrough (true | false) "false"
pdfFontName CDATA "Helvetica"
pdfEncoding CDATA "CP1252"
isPdfEmbedded (true | false) "false"

>

Report Font Name

The name attribute of a <reportFont> element is mandatory and must be unique, because it will be
used when referencing the corresponding report font throughout the report.

Default Report Font

You can use isDefault="true" for one of your report font declarations, to mark the report font that
you want to be used by the reporting engine as the default base font, when dealing with text elements
that do not reference a particular report font. This default font will also be used by the text elements
that do not have any font settings at all.

All the other report font properties are the same as those for a normal element that we are
going to see below.

XML Syntax

<!ELEMENT font EMPTY>

<!ATTLIST font
reportFont NMTOKEN #IMPLIED
fontName CDATA #IMPLIED
size NMTOKEN #IMPLIED
isBold (true | false) #IMPLIED
isItalic (true | false) #IMPLIED
isUnderline (true | false) #IMPLIED
isStrikeThrough (true | false) #IMPLIED
pdfFontName CDATA #IMPLIED
pdfEncoding CDATA #IMPLIED
isPdfEmbedded (true | false) #IMPLIED

>

Referencing a Report Font

When introducing the font settings for a text element of your report, you have the possibility to use a
report font declaration as a base, for those font settings you want to obtain.
All the attributes of the element, if present, are used only to override the attributes with the
same name that are present in the report font declaration referenced using the reportFont attribute.

The JasperReports Ultimate Guide

Page 51

For example, if we have a report font like the following:

<reportFont
name="Arial_Normal"
isDefault="true"
fontName="Arial"
size="8"
pdfFontName="Helvetica"
pdfEncoding="Cp1252"
isPdfEmbedded="false"/>

and we want to create a text field that has basically the same font settings like those in this report font,
but only a greater size, the only thing we should do is to reference this report font using the
reportFont attribute and specify the desired font size like this:

<textElement>

</textElement>

When the reportFont attribute is missing, the default report font is used as base font.

Font Name

In Java, there are two types of fonts: physical fonts and logical fonts. Physical fonts are the actual font
libraries consisting of, for example, TrueType or PostScript Type 1 fonts. The physical fonts may be
Arial, Time, Helvetica, Courier, or any number of other fonts, including international fonts.

Logical fonts are the five font types that have been recognized by the Java platform since version 1.0:
Serif, Sans-serif, Monospaced, Dialog, and DialogInput. These logical fonts are not actual font libraries
that are installed anywhere on your system. They are merely font-type names recognized by the Java
runtime, which must be mapped to some physical font that is installed on your system.

In the fontName attribute of the element or the <reportFont> element, you have to specify
the name of a physical font or the name of a logical font. You only have to make sure the font you
specify really exists and is available on your system.

For more details about fonts in Java, check the Java Tutorial or the JDK documentation.

Font Size

The font size is measured in points and can be specified using the size attribute.

Font Styles and Decorations

There are 4 boolean attributes available in the and <reportFont> elements that control the
font style and/or decoration. Those are isBold, isItalic, isUnderline and isStrikeThrough
and their significance should be evident to anybody.

PDF Font Name

When exporting reports to PDF format, the JasperReports library uses the iText library.

As their name states it (Portable Document Format) the PDF files can be viewed on various platforms
and you can be sure they will always look the same. This is partially because in this format there is a
special way of dealing with fonts.

The JasperReports Ultimate Guide

Page 52

If you want to design your reports so that they eventually be exported to PDF, you have to make sure
you choose the appropriate PDF font settings that correspond to the Java font settings of your text
elements.

The iText library knows how to deal with built-in fonts and TTF files. It recognizes the following built-
in font names:

Courier
Courier-Bold
Courier-BoldOblique
Courier-Oblique
Helvetica
Helvetica-Bold
Helvetica-BoldOblique
Helvetica-Oblique
Symbol
Times-Roman
Times-Bold
Times-BoldItalic
Times-Italic
ZapfDingbats

The iText library requires us to specify either a built-in font name from the above list, either the name
of a TTF file that it can locate on disk, every time we work with fonts. The font name introduced by the
fontName attribute previously explained is of no use when exporting to PDF. This is why we have
special font attributes, so that we are able to specify the font settings that the iText library expects from
us.

The pdfFontName attribute can contain the name of a PDF built-in font from the above list or the
name of a TTF file that can be located on disk at runtime, when exporting to PDF.

It is for the report design creator to choose the right value for the pdfFontName attribute
that would perfectly corresponds to the Java physical or logical font specified using the
fontName attribute. If those two fonts, one used by the Java viewers and printers and the
other used in the PDF format, do not represent in fact the same font, or do not at least look
alike, you might get unexpected results when exporting to PDF format.

Additional PDF fonts can be installed on your system if you choose one of the Acrobat Reader's font
packs. For example, by installing the Asian font pack from Adobe on your system, you would be able
to use for the pdfFontName attribute font names like:

Language PDF Font Name
Simplified Chinese STSong-Light
Traditional Chinese MHei-Medium

MSung-Light
Japanese HeiseiKakuGo-W5

HeiseiMin-W3
Korean HYGoThic-Medium

HYSMyeongJo-Medium

For more details about how to work with fonts when generating PDF documents, check the iText
library documentation.

PDF Encoding

When creating reports in different languages and wanting to export them to PDF, you have to make
sure that you choose the appropriate character encoding type.

For example, an encoding type widely used in Europe is Cp1252, also known as LATIN1. Other
possible encoding types are:

http://www.lowagie.com/iText/
http://www.lowagie.com/iText/

The JasperReports Ultimate Guide

Page 53

Character Set Encoding
Latin 2: Eastern Europe Cp1250
Cyrillic Cp1251
Greek Cp1253
Turkish Cp1254
Windows Baltic Cp1257
Simplified Chinese UniGB-UCS2-H

UniGB-UCS2-V
Traditional Chinese UniCNS-UCS2-H

UniCNS-UCS2-V
Japanese UniJIS-UCS2-H

UniJIS-UCS2-V
UniJIS-UCS2-HW-H
UniJIS-UCS2-HW-V

Korean UniKS-UCS2-H
UniKS-UCS2-V

You can find more details about how to work with fonts and character encoding when generating PDF
documents, here, in the iText library documentation.

PDF Embedded Fonts

If you want to use a TTF file when exporting your reports to PDF format and you want to make sure
everybody will be able to view it without problem, you have to make sure that at least one of the
following conditions are met:
� they all have that TTF font installed on their systems;
� you embed the font in the PDF document itself.

Its not easy to comply with the first condition and this is why the preferred way to do it is to embed the
TTF in the generated PDF documents that you are distributing.

You can do that by setting the isPdfEmbedded attribute to "true".

Further details about how to embed fonts in the PDF documents you can find in the iText
documentation. A very useful example you can find in the unicode sample provided with the project.

8.1.2 Static Texts

Static texts are text elements with fixed content, which does not change during the report filling
process. They are used mostly to introduce static text label in the generated documents.

XML Syntax

<!ELEMENT staticText (reportElement, textElement?, text?)>

<!ELEMENT text (#PCDATA)>

As you can see from the above presented syntax, besides element general properties and text specific
properties that we have already explained, a static text definition has in addition only the <text> tag,
which introduces the fixed text content of the static text element.

8.1.3 Text Fields

Unlike static text elements, which do not change their text content, text fields have an associated
expression that is evaluated with every iteration in the data source, in order to obtain the text content
that has to be displayed.

http://www.lowagie.com/iText/
http://www.lowagie.com/iText/
http://www.lowagie.com/iText/

The JasperReports Ultimate Guide

Page 54

XML Syntax

<!ELEMENT textField (reportElement, textElement?, textFieldExpression?,
anchorNameExpression?, hyperlinkReferenceExpression?,
hyperlinkAnchorExpression?, hyperlinkPageExpression?)>

<!ATTLIST textField
isStretchWithOverflow (true | false) "false"
evaluationTime (Now | Report | Page | Column | Group) "Now"
evaluationGroup CDATA #IMPLIED
pattern CDATA #IMPLIED
isBlankWhenNull (true | false) "false"
hyperlinkType (None | Reference | LocalAnchor | LocalPage |

RemoteAnchor | RemotePage) "None"
>

<!ELEMENT textFieldExpression (#PCDATA)>

<!ATTLIST textFieldExpression
class (java.lang.Boolean | java.lang.Byte | java.util.Date |

java.sql.Timestamp | java.lang.Double | java.lang.Float | java.lang.Integer
| java.lang.Long | java.lang.Short | java.math.BigDecimal |
java.lang.String) "java.lang.String"
>

Variable Height Text Fields

Given the fact that text fields have a dynamic content, most of the time you wont be able to exactly
anticipate the amount of space you have to provide for your text fields so that they can display all their
content.

If the space you reserve for your text fields is not sufficient, the text content will be truncated so that it
fits in the available area.

This scenario is not always acceptable and you can let the reporting engine to calculate itself at runtime
the amount of space required to display the entire content of the text field and automatically adjust the
size of the report element.

You can achieve this by setting the isStretchWithOverflow to "true" for the particular text field
elements you are interested in. By doing this, you make sure that if the specified height for the text
field is not sufficient, it will automatically be increased (never decreased) in order to be able to display
the entire text content.

When text fields are affected by this stretch mechanism, the entire report section to which they belong
to will be also stretched.

Evaluating Text Fields

Normally, all the report expressions are evaluated immediately, using the current values of all the
parameters, fields and variables at that particular moment. It is like making a photo of all data, for
every iteration in the data source, during the report filling process.

This means that at any particular time, you won't have access to values that are going to be calculated
later, in the report filling process. It perfectly makes sense, since all the variables are calculated step by
step and reach their final value only when the iteration arrives at the end of the data source range they
cover.
For example, a report variable that calculates the sum of a field for each page will not contain the
expected sum until the end of the page is reached. That's because the sum is calculated step by step,

The JasperReports Ultimate Guide

Page 55

when iterating through the data source records, and at any particular time, the sum will be only partial,
since not all the records of the specified range have been processed.
If this is the case, how to display the page sum of a this field, on the page header, since this value will
be known only when the end of the page is reached. At the beginning of the page, when generating the
page header, our sum variable would contain zero, or its initial value.

Fortunately, JasperReports has a very interesting feature that lets you decide the exact moment you
want the text field expression to be evaluated, avoiding the default behavior which makes this
expression be evaluated immediately, when generating the current report section.
It is the evaluationTime attribute we are talking about. It can have one of the following values:
� Immediate evaluation: The text field expression is evaluated when filling the current band

(evaluationTime="Now").
� End of report evaluation: The text field expression is evaluated when reaching the end of the

report (evaluationTime="Report").
� End of page evaluation: The text field expression is evaluated when reaching the end of the current

page (evaluationTime="Page").
� End of column evaluation: The text field expression is evaluated when reaching the end of the

current column (evaluationTime="Column").
� End of group evaluation: The text field expression is evaluated when the group specified by the

evaluationGroup attribute changes (evaluationTime="Group").

The default value for this attribute is "Now", as already mentioned. In the example presented above,
you could easily specify evaluationTime="Page" for the text field placed in the page header
section, so that it displays the value of the sum variable only when reaching the end of the current page.

The only restriction you should be aware of, when deciding to avoid the immediate
evaluation of the text field expression, is that in such cases, the text field will never stretch
in order to acquire all its content.
This is because the text element height is calculated when the report section is generated and
even the engine will come back later with the text content of the text field, the element
height will not be adapted, because it will ruin the already created layout.

Suppressing Null Values Display

If the text field expression returns null, your text field will display the "null" text in the generated
document. A simple way to avoid this is to set the isBlankWhenNull attribute to "true". By doing
this, the text field will cease to display "null" and will display an empty string. This way nothing will
appear on your document if the text field value is null.

Formatting Output

Of course, when dealing with numeric or date/time values, you could use the Java API to format the
output of the text field expressions yourself. But there is a more convenient way to do it: by using the
pattern attribute available in the <textField> element.

The value you should supply to this attribute is the same that you would supply if it were for you to
format the value using either the java.text.DecimalFormat class or
java.text.SimpleDateFormat class, depending on the type of value to format.

In fact, what the engine does is to instantiate the java.text.DecimalFormat class if the text field
expression returns subclasses of the java.lang.Number class or to instantiate the
java.text.SimpleDataFormat if the text field expression return java.util.Date or
java.sql.Timestamp objects.

For more detail about the syntax of this pattern attribute, check the Java API documentation for those
two classes: java.text.DecimalFormat and java.text.SimpleDateFormat.

The JasperReports Ultimate Guide

Page 56

Text Field Expression

We have already talked about the text field expression. There is nothing more to say about it except
that it is introduced by the <textFieldExpression> element and can return values from only a
limited range of classes listed below:

java.lang.Boolean
java.lang.Byte
java.util.Date
java.sql.Timestamp
java.lang.Double
java.lang.Float
java.lang.Integer
java.lang.Long
java.lang.Short
java.math.BigDecimal
java.lang.String

If the text field expression class is not specified using the class attribute, it is assumed to be
java.lang.String, by default.

8.2 Graphic Elements

The second major category of report elements, besides text elements that we have seen, are the graphic
elements. In this category we have lines, rectangles and images.

They all have some properties in common and those are grouped under the attributes of the
<graphicElement> tag.

XML Syntax

<!ELEMENT graphicElement EMPTY>

<!ATTLIST graphicElement
stretchType (NoStretch | RelativeToTallestObject |

RelativeToBandHeight) "NoStretch"
pen (None | Thin | 1Point | 2Point | 4Point | Dotted) #IMPLIED
fill (Solid) "Solid"

>

Stretch Behavior

The stretchType attribute of a graphic element can be used to customize the stretch behavior of the
element when on the same report section there are text fields that stretch themselves because their text
content is too large to fit in the original text field height.
When stretchable text fields are present on a report section, the height of the report section itself will be
affected be stretch.

A graphic element can respond to the modification of the report section layout in three ways:
� Won't stretch: The graphic element preserves its original specified height

(strechType="NoStretch").
� Stretching relative to the parent band height: The graphic element will adapt its height to match

the new height of the report section it placed on, which has been affected by stretch
(stretchType="RelativeToBandHeight").

� Stretching relative to the tallest element in group: You have the possibility to group the elements
of a report section in multiple imbricate groups, if you like. The only reason you might have for
grouping your report elements is to be able to customize their stretch behavior. Details about how
to group elements are supplied in the section 8.4 Element Groups that will follow. Graphic

The JasperReports Ultimate Guide

Page 57

elements can be made to automatically adapt their height to fit the amount of stretch suffered by
the tallest element in the group that they are part of
(stretchType="RelativeToTallestObject").

Border Thickness

Unlike text elements, the graphic elements always have a border. You can control the type and
thickness of it using the pen attribute. Remember that the color of the border comes from the
forecolor attribute presented when describing the <reportElement> tag, in a previous chapter.

Here are all the possible types for a graphic element border:
� No border: The graphic element will not display any border around it (pen="None").
� Thin border: The border around the graphic element will be half a point thick (pen="Thin").
� 1 point thick border: Normal border (pen="1Point").
� 2 points thick border: Thick border (pen="2Point").
� 4 point thick border: (pen="4Point").
� Dotted border: The border will be 1 point thick and made of dots (pen="Dotted").

The default border around graphic elements depends on their type. Lines and rectangles have a normal
1 point thick border by default. Images however, do not display any border, by default.

Background Fill Style

The fill attribute specifies the style of the background for the graphic elements, but the only style
supported for the moment is the solid fill style, which is also the default (fill="Solid").

8.2.1 Lines

When displaying a line element, JasperReports draws one of the two diagonals of the rectangle
represented by the x, y, width and height attributes specified for this particular line element.

XML Syntax

<!ELEMENT line (reportElement, graphicElement?)>

<!ATTLIST line
direction (TopDown | BottomUp) "TopDown"

>

Line Direction

Which one of the two diagonals of the rectangle should be drawn can be decided using the direction
attribute:
� The diagonal that starts in the top-left corner of the rectangle and goes to the bottom left corner is

drawn in case you set direction="TopDown".
� The line will start in the bottom-left corner and will go to the upper-right if you choose

direction="BottomUp".

You can draw vertical lines by specifying width="0" and horizontal lines setting height="0". For
such lines the direction is not important.

The default direction for a line is "TopDown".

The JasperReports Ultimate Guide

Page 58

8.2.2 Rectangles

The rectangles are the most basic graphic elements. This is why there are no supplementary settings to
make for the declaration of a rectangle element, besides those already seen when talking about the
<reportElement> and <graphicElement> tags.

XML Syntax

<!ELEMENT rectangle (reportElement, graphicElement?)>

For more detailed examples of lines and rectangles, check the shapes sample.

8.2.3 Images

The most complex graphic elements that you can have on a report are the images.

Just like for the text field elements, their content is dynamically evaluated at runtime, using a report
expression.

XML Syntax

<!ELEMENT image (reportElement, graphicElement?, imageExpression?,
anchorNameExpression?, hyperlinkReferenceExpression?,
hyperlinkAnchorExpression?, hyperlinkPageExpression?)>

<!ATTLIST image
scaleImage (Clip | FillFrame | RetainShape) "RetainShape"
isUsingCache (true | false) "true"
evaluationTime (Now | Report | Page | Column | Group) "Now"
evaluationGroup CDATA #IMPLIED
hyperlinkType (None | Reference | LocalAnchor | LocalPage |

RemoteAnchor | RemotePage) "None"
>

<!ELEMENT imageExpression (#PCDATA)>

<!ATTLIST imageExpression
class (java.lang.String | java.io.File | java.net.URL |

java.io.InputStream | java.awt.Image) "java.lang.String"
>

Scaling Images

Given the fact that images are loaded at runtime, there is no way knowing their exact size, when
creating the report design. It might be that the dimensions of the image element specified at design time
do not correspond to the actual image loaded at runtime.

This is why you have to decide how you expect the image to behave in order to adapt to the original
image element dimensions you specified in the report design. There is the scaleImage attribute that
allows you to do that, by choosing one of its 3 possible values:
� Clipping the image: If the actual image is larger than the image element size, it will be cut off so

that it keeps its original resolution, and only the region that fits the specified size will be displayed
(scaleImage="Clip").

The JasperReports Ultimate Guide

Page 59

� Forcing the image size: If the dimensions of the actual image do not fit those specified for the
image element that displays it, the image can be forced to obey them and stretch itself so that it fits
in the designated output area. It will be deformed if necessary (scaleImage="FillFrame").

� Keeping image proportions: If the actual image does not fit into the image element, it can be
adapted to those dimensions without needing to deform it and keep its original proportions
(scaleImage="RetainShape").

Retain Shape

Clip

Fill Frame

- figure 7 -

Caching Images

All image elements have dynamic content. There are no special elements to introduce static images on
the reports, like we have special static text elements.
However, most of the time, the images on a report are in fact static and do not necessarily come from
the data source or from parameters. In the majority of cases, they are loaded from files on disk and
represent logos and other static resources.

If we have to display the same image multiple times on a report, if it is about a logo appearing on the
page header for example, there is no point on loading the image file every time we have to display it.
We can instruct the reporting engine to cache this particular image. This way we are making sure that
the image will be loaded from disk or from its particular location only once and then it will only be
reused every time it has to be displayed.

By setting the isUsingCache attribute to "true", the reporting engine will try to recognize
previously loaded images using their specified source. For example, it will recognize an image if the
image source is a file name that it has already loaded, or if it is the same URL.

This caching functionality is available only for image elements that have expressions returning
java.lang.String objects as the image source, representing file names, URLs or classpath
resources. That's because the engine uses the image source string as the key to recognize that it is the
same image that it has already cached.

Evaluating Images

As we have already seen when talking about text fields, you have the possibility to postpone the
evaluation of the image expression, which by default is performed immediately.
This would allow you to display in some region of a document, images that are going to be built or
chose only later in the report filling process, due to complex algorithms or whatever.

The same attributes, evaluationTime and evaluationGroup, that we have talked about in the text
fields section are available also in the <image> element. The evaluationTime attribute can have the
following values:
� Immediate evaluation: The image expression is evaluated when filling the current band

(evaluationTime="Now").
� End of report evaluation: The image expression is evaluated when reaching the end of the report

(evaluationTime="Report").
� End of page evaluation: The image expression is evaluated when reaching the end of the current

page (evaluationTime="Page").

The JasperReports Ultimate Guide

Page 60

� End of column evaluation: The image expression is evaluated when reaching the end of the current
column (evaluationTime="Column").

� End of group evaluation: The image expression is evaluated when the group specified by the
evaluationGroup attribute changes (evaluationTime="Group").

The default value for this attribute is "Now".

Image Expression

The value returned by the image expression is used as the source for the image that is going to be
displayed. The image expression is introduced by the <imageExpression> element and can return
values from only a limited range of classes listed below:

java.lang.String
java.io.File
java.net.URL
java.io.InputStream
java.awt.Image

When the image expression returns a java.lang.String value, the engine will try to see
whether the value represents an URL from which to load the image. If it is not a valid URL
representation, it will try to locate a file on disk and load the image from it, assuming that
the value represents a file name. If no file is found, it will finally assume that the string
value represents the location of a classpath resource and will try to load the image from
there. Only if all those fail, an exception will be thrown.

If the image expression class is not specified using the class attribute, it is assumed to be
java.lang.String, by default.

The images sample provided with the project contains several examples of image elements.

8.2.4 Charts and Graphics

The JasperReports library does not produce charts and graphics itself. This is not one of its goals.
However, it can easily integrate charts and graphics produces by other, more specialized Java libraries.

The great majority of available Java libraries that produce charts and graphics can output to image files
or to in-memory Java image objects. This is why it shouldn't be hard for anybody to put a chart or a
graphic generated by one of those libraries into a JasperReports document using a normal image
element that we have presented in the previous section of this book.

You can see this working in the sample called chart, which comes with the project.

8.3 Hyperlinks

JasperReports allows you to create drill-down reports, to introduce tables of contents in your
documents or to redirect viewers to other external documents using special report elements called
hyperlinks.

Hyperlinks are special elements that contain a reference to a local destination within the current
document or to an external resource to which the viewer of the document will be redirected if he or she
clicks on that particular hyperlink element.
Hyperlinks are not the only actors in this viewer-redirecting scenario. There has to be a way for you to
specify what are the destinations in a document. These local destinations are called anchors.

The JasperReports Ultimate Guide

Page 61

There are no special report elements that introduce hyperlinks or anchors in a report design, but rather
some special setting that make an usual report element to be a hyperlink or/and an anchor.

In JasperReports, only text field elements and image elements can be hyperlinks or anchors. This is
because for both types of elements, there are special settings that allow you to specify the hyperlink
reference to which the hyperlink will point or the name of the local anchor. Note that a particular text
field or image can be both anchor and hyperlink at the same time.

XML Syntax

<!ELEMENT anchorNameExpression (#PCDATA)>

<!ELEMENT hyperlinkReferenceExpression (#PCDATA)>

<!ELEMENT hyperlinkAnchorExpression (#PCDATA)>

<!ELEMENT hyperlinkPageExpression (#PCDATA)>

Hyperlink Type

When presenting the XML syntax for text field elements and image elements, you probably saw that
there was an attribute called hyperlinkType, which we didn't explain at that moment. We are going
to do that right now and here are the possible values for this attribute along with their significance:
� No hyperlink: By default, neither the text fields nor the images represent hyperlinks, even if the

special hyperlink expressions are present (hyperlinkType="None").
� External reference: The current hyperlink points to an external resource specified by the

corresponding <hyperlinkReferenceExpression> element, usually an URL
(hyperlinkType="Reference").

� Local anchor: The current hyperlink points to a local anchor specified by the corresponding
<hyperlinkAnchorExpression> element (hyperlinkType="LocalAnchor").

� Local page: The current hyperlink points to a 1 based page index within the current document
specified by the corresponding <hyperlinkPageExpression> element
(hyperlinkType="LocalPage").

� Remote anchor: The current hyperlink points to an anchor specified by the
<hyperlinkAnchorExpression> element, within an external document indicated by the
corresponding <hyperlinkReferenceExpression> element
(hyperlinkType="RemoteAnchor").

� Remote page: The current hyperlink points to a 1 based page index specified by the
<hyperlinkPageExpression> element, within an external document indicated by the
corresponding <hyperlinkReferenceExpression> element
(hyperlinkType="RemotePage").

Anchor Expression

If present in a text field or image element declaration, the <anchorNameExpression> tag will
transform that particular text field or image into a local anchor of the resulting document, to which
hyperlinks can point. The anchor will bare the name returned after evaluating the anchor name
expression, which should always return java.lang.String values.

Hyperlink Expressions

Depending on the current hyperlink type, one or two of the following expressions will be evaluated and
used to build the reference to which the hyperlink element will point:

The JasperReports Ultimate Guide

Page 62

<hyperlinkReferenceExpression>
<hyperlinkAnchorExpression>
<hyperlinkPageExpression>

What is important to know is that the first two should always return java.lang.String and the third
should return java.lang.Integer values.

There is a special sample called hyperlink, provided with the projects, which shows how this type of
report elements can be used.

8.4 Element Groups

Report elements placed in any report section can be arranged in multiple imbricate groups. The only
reason you might have for grouping your elements is to be able to customize the stretch behavior of the
graphic elements, as explained in the section 8.2 Graphic Elements.

The stretchType attribute, available for graphic elements, has among its possible values one called
"RelativeToTallestObject". When choosing this option, the engine will try to identify the object
from the same group with the current graphic element, which suffered the biggest amount of stretch. It
will then adapt the height of the current graphic element to the height of this tallest element of the
group.

But for this to work, you have to group your elements. This is done using the <elementGroup> and
</elementGroup> tags to mark the elements that are part of the same group.

XML Syntax

<!ELEMENT elementGroup (line | rectangle | image | staticText | textField |
subreport | elementGroup)*>

Element groups can contain other nested element groups and there is no limit on the number of the
nested element groups.

Check the stretch sample, to see how element grouping works.

The JasperReports Ultimate Guide

Page 63

9 Subreports

Subreports are an import feature for a report-generating tool. They allow the creation of more complex
reports and simplify the design work. The subreports are very useful when creating master-detail type
of reports or when the structure of a single report is not sufficient to describe the complexity of the
desired output document.

A subreport is in fact a normal report that is been incorporated as apart of another report. You can
imbricate your subreports and make a subreport that contains itself other subreports, the nesting level
not being limited.

On the other hand, a subreport is also a special kind of a report element that helps you introduce a
subreport into the parent report.

There's nothing more to say about subreports, seen as normal reports, because they are compiled and
filled just like normal reports are and we already have seen all that in previous chapters. In fact, any
report design can be used as a subreport when incorporated into another report design, without the need
to change anything inside it.

What we are going to see now, are the details concerning the <subreport> element that you use when
introducing subreports into master reports.

XML Syntax

<!ELEMENT subreport (reportElement, parametersMapExpression?,
subreportParameter*, (connectionExpression | dataSourceExpression)?,
subreportExpression?)>

<!ATTLIST subreport
isUsingCache (true | false) "true"

>

<!ELEMENT parametersMapExpression (#PCDATA)>

<!ELEMENT subreportParameter (subreportParameterExpression?)>

<!ATTLIST subreportParameter
name NMTOKEN #REQUIRED

>

<!ELEMENT subreportParameterExpression (#PCDATA)>

<!ELEMENT connectionExpression (#PCDATA)>

<!ELEMENT dataSourceExpression (#PCDATA)>

<!ELEMENT subreportExpression (#PCDATA)>

<!ATTLIST subreportExpression
class (java.lang.String | java.io.File | java.net.URL |

java.io.InputStream | dori.jasper.engine.JasperReport) "java.lang.String"
>

Subreport Expression

Just like normal report designs, subreport designs are in fact dori.jasper.engine.JasperReport
objects. Those are obtained after compiling a dori.jasper.engine.design.JasperDesign object
as seen in the 3.2 Compiling Report Designs section of this book.

The JasperReports Ultimate Guide

Page 64

We have seen that the text field elements have an expression that will be evaluated to obtain the text
content to display. The image elements have an expression representing the source of the image to
display. In the same way, subreport elements have an expression that is evaluated at runtime, in order
to obtain the source of the dori.jasper.engine.JasperReport object to load.

The so-called subreport expression is introduced by the <subreportExpression> element and can
return values from the following classes:

java.lang.String
java.io.File
java.net.URL
java.io.InputStream
dori.jasper.engine.JasperReport

When the subreport expression returns a java.lang.String value, the engine will try to
see whether the value represents an URL from which to load the subreport design object. If
it is not a valid URL representation, it will try to locate a file on disk and load the subreport
design from it, assuming that the value represents a file name. If no file is found, it will
finally assume that the string value represents the location of a classpath resource and will
try to load the subreport design from there. Only if all those fail, an exception will be
thrown.

If the image expression class is not specified using the class attribute, it is assumed to be
java.lang.String, by default.

Caching Subreports

A subreport element can load different subreport designs with every evaluation, giving you great
flexibility in shaping you documents.
However, most of the time, the subreport elements on a report are in fact static and their source do not
necessarily change with every new evaluation of the subreport expression. In the majority of cases, the
subreport designs are loaded from fixed locations: files on disk or static URLs.

If the same subreport design is filled multiple times on a report, there is no point on loading the
subreport design object from the source file every time we have to fill it with data.
We can instruct the reporting engine to cache this particular subreport design object. This way we are
making sure that the subreport design will be loaded from disk or from its particular location only once
and then it will only be reused every time it has to be filled.

By setting the isUsingCache attribute to "true", the reporting engine will try to recognize
previously loaded subreport design objects, using their specified source. For example, it will recognize
a subreport object if its source is a file name that it has already loaded, or if it is the same URL.

This caching functionality is available only for subreport elements that have expressions returning
java.lang.String objects as the subreport design source, representing file names, URLs or
classpath resources. That's because the engine uses the subreport source string as the key to recognize
that it is the same subreport design that it has already cached.

The JasperReports Ultimate Guide

Page 65

9.1 Subreport Parameters

Since subreports are normal reports themselves, they are compiled or filled in the same way. This
means that they also require a data source from which to get the data when they are filled and that can
also receive parameters, for the additional information they have to use when being filled.

There are two ways to supply the parameter values to a subreport and they can be used simultaneously,
if desired.

You can supply a map containing the parameter values, like we do when filling a normal report with
data, using one of the fillReportXXX() methods exposed by the
dori.jasper.engine.JasperFillManager class (see the 3.4 Filling Reports chapter to refresh
your memory).
This can be achieved if you use the <parametersMapExpression> element, which introduces the
expression that will be evaluated in order to obtain the specified parameter map. This expression should
always return a java.util.Map object in which the keys are the parameter names.

In addition to or instead of supplying the parameter values in a map, you can supply the parameter
values individually, one by one, using a <subreportParameter> element for each parameter you are
interested in. In such case, you have to specify the name of the corresponding parameter using the
mandatory name attribute and you have to provide an expression that will be evaluated at runtime to
obtain the value for that particular parameter, value that will be supplied to the subreport filling
routines.

Note that you can use both ways to provide subreport parameter values, simultaneously. When this
happens, the parameter values specified individually, using the <subreportParameter> element, will
override the parameters values present in the parameter map, that correspond to the same subreport
parameter. If the map does not contain corresponding parameter values already, the individually
specified parameter values will be added to the map.

Attention! When you supply the subreport parameter values, you have to be aware that the
reporting engine will affect the java.util.Map object it receives, adding the built-in
report parameter values that correspond to the subreport. This map is also affected by the
individually specified subreport parameter values, as already explained above.
In order to avoid altering the original java.util.Map object that you send, you can wrap it
in a different map, before supplying it to the subreport filling process like this:

new HashMap(myOriginalMap)

This way, your original map object remains unaffected and modifications are made to the
wrapping map object.
This is useful especially when you want to supply to your subreport the same set of
parameters that the master report has received and you use the built-in
REPORT_PARAMETERS_MAP report parameter of the master report. However, you don't want
to affect the value of this built-in parameter and you will wrap it like this:

<parametersMapExpression>
 new HashMap($P{REPORT_PARAMETERS_MAP})
</parametersMapExpression>

The JasperReports Ultimate Guide

Page 66

9.2 Subreport Data Source

Subreports need a data source in order to generate their content, just like normal report do.
In the 3.4 Filling Reports chapter of this book we have seen that when filling a report you have to
supply either a data source object or a connection object, depending on that particular report type. That
is if it has an internal SQL query and you want to have it executed to obtain the report data or you
supply the report data yourself.

Subreports behave in the same way and expect to receive the same kind of input when they are being
filled.

You can supply to your subreport either a data source using the <dataSourceExpression> element
or a JDBC connection for the engine to execute the subreport's internal SQL query using the
<connectionExpression> element. These two XML elements cannot be both present at the same
time in a subreport element declaration. This is because you cannot supply both a data source and a
connection for your subreport. You have to decide on one of them and stick to it.

The report engine expects that the data source expression returns a
dori.jasper.engine.JRDataSource object and that the connection expression returns a
java.sql.Connnection object, whichever is present.

You can see how subreports work, if you check the subreport sample.

The JasperReports Ultimate Guide

Page 67

10 Advanced JasperReports

Previous chapters have presented the core functionality that most people will get to use when working
with the JasperReports library.

However, some complex requirements of your specific applications might force you to dig deeper into
the JasperReports functionality in order to adapt it to suit you needs.

In the following sections we are going to take a closer look at those aspects that are likely to interest
you if you'll want to make full benefit from the use of the JasperReports library.

10.1 XML Report Designs Loading and Writing

In the 3.2 Compiling Report Designs chapter we have explained how report designs pass from their
initial XML form into the compiled form, before being used to generate full-featured documents.

The engine first parses the XML report design and creates the in-memory representation of it by
instantiating and preparing a dori.jasper.engine.design.JasperDesign object. This object is
then subject to various validation checks and suffers the compilation process that produces a
corresponding dori.jasper.engine.JasperReport object.

But in certain cases, in your application, you might want to manually load the XML report design into a
dori.jasper.engine.design.JasperDesign object, without immediately compiling it. Such
scenarios might be common for applications that programmatically create report designs and use the
XML form to store them temporary or permanently.

Loading dori.jasper.engine.design.JasperDesign objects from XML report design can be
easily by calling one of the public static load() methods exposed by the
dori.jasper.engine.xml.JRXmlLoader class. This way you can load report design object from
XML content store in filed or that is been read from input streams.

The process opposed to the XML report design loading process is the generation of the XML form for a
given report design object.

As seen above, sometimes report designs are created programmatically, using the JasperReports API.
The report design objects obtained this way can be serialized, for disk storage or transfer over the
network, but they also can be stored in XML format.

You can obtain the XML representation of a given report design object by using one of the public static
writeReport() methods exposed by the dori.jasper.engine.xml.JRXmlWriter utility class.

10.2 Implementing Data Sources

JasperReports library comes with several default implementations of the
dori.jasper.engine.JRDataSource interface. This interface is used to supply the report data
when invoking the report filling process, as explained in the previous chapters of this book.
These default implementations let you generate reports using data from relational databases retrieved
through JDBC, from Java Swing tables or from collections and arrays of JavaBeans objects.

But maybe your application data that your are trying to display in your reports has a special structure or
is organized in a very particular way preventing you from using any of the default implementations of
the data source interface that come with the library.
In such situations, you will have to create custom implementations for the
dori.jasper.engine.JRDataSource interface, in order to wrap your special report data, so that
the reporting engine can understand and use it when generating the reports for you.

The JasperReports Ultimate Guide

Page 68

Creating a custom implementation for the dori.jasper.engine.JRDataSource interface is not
very difficult since you have to implement only two methods.
The first one, the next() method, is called by the reporting engine every time it wants the current
pointer to advance to the next virtual record in the data source.
The other, the getFieldValue() method, is called by the reporting engine with every iteration in the
data source to retrieve the value for each report field.

10.3 Customizing Viewers

The JasperReports library comes with built-in viewers that allow you to display the reports stored in the
library's proprietary format or to preview your report designs when you create them.
These viewers are represented by the following two classes:
� dori.jasper.view.JasperViewer : You use this class to view generated reports, either as

in-memory objects or serialized objects on disk or even stored in XML format.
� dori.jasper.view.JasperDesignViewer : This class can be used to preview report

designs, either in XML form or compiled form.

But these default viewers might not suit everybody's needs and therefore you might consider
customizing them so they adapt to certain application requirements.
In order to do that, you should be aware that these viewers use in fact other, more basic visual
components that come with the JasperReports library.
The report viewer mentioned above use the visual component represented by the
dori.jasper.view.JRViewer class and its companions. It is in fact a special
javax.swing.JPanel component that is capable of displaying generated reports and that can be
easily incorporated in other Java Swing based applications or applets.
If the functionality of this basic visual component is not sufficient for what you need, you can adapt it
by subclassing it. If for example you would want to have an extra button on the toolbar of this viewer,
you might consider extending the component and add that button yourself in the new visual component
you obtain by subclassing.

This can be seen in the webapp sample, where the "Printer Applet" displays a customized version of the
report viewer with an extra button in the toolbar.

Another very important issue is that the default report viewer that comes with the library does not know
how to deal with document hyperlinks that point to external resources. It only deals with local
references and can redirect the viewer to corresponding local anchor.
However, JasperReports offers you the possibility to handle yourself the clicks made on document
hyperlinks that point to external documents and not local anchors.

The only thing you have to do in order to achieve this, is to implement the
dori.jasper.view.JRHyperlinkListener interface and to add to register with the viewer
component an instance of this listener class, using the addHyperlinkListener() method exposed
by the dori.jasper.view.JRViewer class.
By doing this, you make sure the viewer will also call your implementation of the gotoHyperlink()
method in which you handle yourself the external references.

10.4 Exporting to New Output Formats

The JasperReports library continually evolves and improves. Among the features that are likely to be
introduced with time is the ability to export to new documents formats, besides PDF, HTML and XML.

In order to extend diversify in this direction, without affecting the existing functionality, JasperReports
provides those interested in this subject an interface for them to implement, in case they want to create
exporter classes that transform the generated documents into new output formats.
This way, if you need to export your reports into a special output format that is not yet available in the
core library, you might decide to implement yourself the dori.jasper.engine.JRExporter
interface.

The JasperReports Ultimate Guide

Page 69

Before deciding to implement this interface, it is important for you to understand how the
implementation is expected to function.

All the input data the exporter might need should be supplied to it using the so-called exporter
parameters, before the exporting process is started.
This is because the exporting process will be always invoked by calling the exportReport() method
of the dori.jasper.engine.JRExporter interface, and this method does not receive any
parameters itself, when called. The exporter parameters have to be already set using the
setParameter() method on the exporter instance you are working with, before launching the export
task.
You might choose to bulk set all your exporter parameters using the setParameters() method which
receives a java.util.Map object containing the parameter values. The keys in this map should be
instances of the dori.jasper.engine.JRExporterParameter class, as you would supply when
individually calling the setParameter() method for each of your exporter parameters.

Note that no matter what the type of output your exporter produces, you will be using parameters to
indicate to the exporter where to place or send this output.
Such parameter might be called OUT parameters.
For example, if you want your exporter to send the output it produces to an output stream, you will
supply the java.io.OutputStream object reference to the exporter using a parameter, probably
identified by the dori.jasper.engine.JRExporterParameter.OUTPUT_STREAM constant.
It is recommended to use the public constants of the
dori.jasper.engine.JRExporterParameter class to identify the parameters you set in your
exporters and only if you don't find one available for a particular setting you have to make in your
exporter, to extend this class to add new constants. This can be seen for the
dori.jasper.engine.export.JRXmlExporter, where special parameter identifier where created
by subclassing the dori.jasper.engine.JRExporterParameter class in the
dori.jasper.engine.export.JRXmlExporterParameter class.

You don't have to start from scratch when implementing the exporter interface, because there is a
convenience abstract class called dori.jasper.engine.JRAbstractExporter that at least deals
with parameter management for you.

	Introduction
	API Overview
	Main Tasks and Processes
	XML Parsing
	Compiling Report Designs
	Report Design Preview
	Filling Reports
	Viewing Reports
	Printing Reports
	Exporting Reports
	Object Loading and Saving

	Report Designs
	DTD Reference
	XML Encoding
	Report Properties

	Report Data
	Expressions
	Parameters
	Built-in Report Parameters

	Data Source
	Report Query
	Fields
	Variables
	Calculations
	Built-in Report Variables

	Report Sections
	Main Report Sections
	Data Grouping

	Scriptlets
	Report Elements
	Text Elements
	Fonts and Unicode Support
	Static Texts
	Text Fields

	Graphic Elements
	Lines
	Rectangles
	Images
	Charts and Graphics

	Hyperlinks
	Element Groups

	Subreports
	Subreport Parameters
	Subreport Data Source

	Advanced JasperReports
	XML Report Designs Loading and Writing
	Implementing Data Sources
	Customizing Viewers
	Exporting to New Output Formats

